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Sequence analysis is often the first guide for the prediction of residues in a
protein family that may have functional significance. A few methods have
been proposed which use the division of protein families into subfamilies
in the search for those positions that could have some functional signifi-
cance for the whole family, but at the same time which exhibit the speci-
ficity of each subfamily (“Tree-determinant residues”). However, there
are still many unsolved questions like the best division of a protein family
into subfamilies, or the accurate detection of sequence variation patterns
characteristic of different subfamilies. Here we present a systematic
study in a significant number of protein families, testing the statistical
meaning of the Tree-determinant residues predicted by three different
methods that represent the range of available approaches. The first
method takes as a starting point a phylogenetic representation of a protein
family and, following the principle of Relative Entropy from Information
Theory, automatically searches for the optimal division of the family into
subfamilies. The second method looks for positions whose mutational
behavior is reminiscent of the mutational behavior of the full-length
proteins, by directly comparing the corresponding distance matrices. The
third method is an automation of the analysis of distribution of sequences
and amino acid positions in the corresponding multidimensional spaces
using a vector-based principal component analysis. These three methods
have been tested on two non-redundant lists of protein families: one com-
posed by proteins that bind a variety of ligand groups, and the other com-
posed by proteins with annotated functionally relevant sites. In most
cases, the residues predicted by the three methods show a clear tendency
to be close to bound ligands of biological relevance and to those amino
acids described as participants in key aspects of protein function. These
three automatic methods provide a wide range of possibilities for
biologists to analyze their families of interest, in a similar way to the one
presented here for the family of proteins related with ras-p21.
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Introduction

Several methods have been developed to predict
the residues in a protein family that may be
involved in a given biological activity. Good candi-
dates for functionally important sites in a multiple
sequence alignment (MSA) are the completely con-
served positions. However, it would be interesting
to explore other sequence patterns indicating
possible functionally important sites in a protein
family. Other positions subject to specific variation
between protein families may reveal key aspects
of the evolution of the functional specificity and
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provide additional information about the compo-
sition of the binding sites.

Casari et al.1 introduced the “SequenceSpace”
analysis method to detect those residues with a
tendency to be conserved within a subfamily of
proteins, but which differ between subfamilies
(Tree-determinant positions), and regarded them
as a result of the evolutionary scenario in which
conservation and specificity are present in a
delicate balance.

Similarly, Livingstone & Barton2 analyzed those
positions with conservation patterns in one or
more subfamilies, even if they were not conserved
in every subfamily. They extended their
observations to include a characterization of the
physico-chemical properties of these positions.

Landgraf et al.3 developed a method that uses
sequence and structure information to predict
functional patches in protein surfaces. The method
compares a regional similarity matrix for the
residues in a surface patch with the global simi-
larity matrix of the alignment and detects both
regions whose conservation pattern is similar to
the one of the whole alignment and those that are
different.

Lichtarge et al.4,5 proposed an “Evolutionary
Trace” procedure, which predicts active sites and
functional interfaces in proteins with known struc-
ture. In order to generate this method, they manu-
ally determined clusters of protein families based
on the correlation between sequence identity and
functional characteristics. Then, those completely
conserved residues in the entire family, and those
invariant residues that change between sub-
families, are mapped onto the structure to give a
three-dimensional functional map. This method
was recently automated5 and applied to the predic-
tion of patches on proteins surfaces related with
protein function in a large set of proteins. Armon
et al.6 and Pupko et al.7 use a more accurate evalu-
ation of the rate of evolution per site to take into
account possible artefacts related with the non-
equal representation of the species in the MSA.

There have been other interesting approaches,
which attempt to classify sequences in functional
specific subfamilies within a protein family, and to
detect conservation patterns related to a certain
functional activity of the protein family.8 – 12 To com-
pare the results of all of these approaches is
beyond the scope of this paper.

Our group has been particularly involved in the
use of this type of methodology for the prediction
of specificity residues in proteins of the ras super-
family. In 1994, using an early version of Sequence-
Space, we predicted the involvement of three
separate sequence regions in the switch of speci-
ficity between rab5 and rab6, a prediction that was
successfully corroborated by the replacement of
the predicted region and the assessment of the
function of the chimeras in cellular systems.13

More recently, we have used the same approach to
predict two key positions for determining the
differential affinity for external activating effectors

of ras and ral proteins.14 As in the previous case,
the exchange of these two positions was sufficient
to produce a switch of the corresponding specifici-
ties. This experience made us confident in the
predictions generated by the expert use of
SequenceSpace and related approaches.

However, there are still many questions about
the nature of Tree-determinant positions. For
example, one of the important points to study in
greater depth is the most appropriate way of divid-
ing a protein family into subfamilies in order to
associate the Tree-determinants with sites, which
are likely to be responsible for functional differ-
ences between these subfamilies. Within this con-
text one could discuss different questions like: is
there any optimal division of a protein family into
subfamilies exhibiting more of these positions? Do
they follow certain variation patterns among
subfamilies?

These questions have an intrinsic biological
interest, and may help to find the Tree-determi-
nants in cases where we do not have enough
sequences or there is no optimal divergence
among sequences in a protein family alignment.

Although the approaches described partially
answers some of these questions, one could think
about the possibility of exploring automatically
different specificity levels of division of a protein
family into subfamilies in order to understand
some of the questions addressed above. Moreover,
most of the methods described are not fully auto-
matic and thus unsuitable for testing in large data
sets or for other large-scale applications, like the
prediction of functionally important residues in a
genomic context.

In pursuit of these goals, we implemented three
fully automatic methods for the detection of Tree-
determinant residues that represent the main
approaches to this problem. Although the methods
have as a common general purpose the search for
the best Tree-determinants involved in the func-
tional activity of the protein family, they are based
on distinct concepts and thus deal with different
aspects of the problem. We also considered the
completely conserved positions that complement
the predictions of the first three methods.

“The Level Entropy Method” (S-method) is
based on the automatic search for different levels
of a protein family splitting into subfamilies to
search for an optimal reliable level according to
the number of Tree-determinants involved in the
function of the protein family. In order to do that,
we first analyzed different cuts of a phylogenetic
tree of a protein family and evaluates the relation
between the stability of the “cut level” and the
number of Tree-determinants, normalized by the
amount of conserved positions in each subfamily.
Using the concept of Relative Entropy from Infor-
mation Theory,15 we measure the distance between
the distribution of Tree-determinants and the pro-
duct of the distributions of conserved positions in
each subfamily. The general model is related to
the one developed by Hannenhalli & Russel,16
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although the explicit implementation is different.
We are aware that in some cases, due to the com-
plexity in the function of certain protein families,
more than one level of division could show Tree-
determinants involved in different functional
activities. However, as mentioned above, within
this method we aim to find the most informative
level regarding the number of Tree-determinants
possibly involved in biological activity.

The “Mutational Behavior Method” (MB-
method) searches for Tree-determinant positions
in a multiple sequence alignment whose
mutational behavior is similar to the mutational
behavior of the whole family. We calculate a corre-
lation coefficient between the position change
matrix, representing the mutational behavior of
the potential Tree-determinant position, and the
protein change matrix, representing the mutational
behavior of the whole family. This implementation
is similar to the one recently published by
Landgraf et al.3

Finally, the third method “SequenceSpace
Automatization Method” (SS-method) deals with
the automation of the human analysis of the classi-
fication results produced by SequenceSpace.1

SequenceSpace detects functionally important resi-
dues from a multiple sequence alignment. It is
based on a vector representation of the aligned
proteins and residues followed by a principal com-
ponent analysis that allows the selection of those
axes in the sequencespace most populated by the
proteins in the family and the characteristic resi-
dues of the different subfamilies. Although this
method works more effectively than other
approaches,17 it has the disadvantage of requiring
human inspection and manipulation of the results
(via an interactive interface), which renders it
unsuitable for statistical purposes, like the predic-
tion of functional residues for large sets of proteins
or complete genomes. The human intervention
mainly consists of the search for protein clusters
(protein subfamilies), the discrimination of those
clusters according to biological expertise, the
search for residue clusters, and the selection of the
matching residue clusters and protein clusters.
The clustering step presented here goes one step
towards the automatic processing of the Sequence-
Space results. Although automatic implementation
of human expert knowledge is impossible at pre-
sent, the method attempts to identify the residues
with similar tendencies by identifying clear clus-
ters in the multi-dimensional space using a
straightforward geometrical criterion.

To check the efficacy of the three methods (com-
bined with the completely conserved positions),
we tested our predictions on two independent
sequence-non-redundant lists of protein families
whose representative proteins have a known struc-
ture (and only one chain) in the Protein Data
Bank.18 The first list of 191 protein families is com-
posed of proteins binding various chemical
groups, like prosthetic groups and ions (hereafter
“heteroatoms”), which are potentially required for

their biological activity. From the list of hetero-
atoms in the PDB files, we excluded those repre-
senting solvent molecules (water, heavy water and
others). The second list with 112 protein families
includes proteins with annotated functionally
important sites (“SITE” records in PDB). The align-
ment for each protein family was taken from the
HSSP database.19

Our aim was to examine the closeness between
the predicted Tree-determinants (or conserved
positions) and the heteroatoms or functionally
important annotated sites to assess whether they
could be involved in some biological activity
relating the heteroatoms or other biological func-
tions. We also examined the closeness between the
Tree-determinants themselves to assess the degree
to which the predicted Tree-determinants form
clusters, i.e. whether they are located around a
possible binding or active site. We pay special
attention to the predicted Tree-determinant in
physical contact with the heteroatoms, and also to
the ones that coincide with the annotated func-
tional sites.

Together with the automatic analysis of many
protein structures we examined in more detail
several other examples. In particular, we present
the detailed results obtained with the three
methods for the protein ras-p21, which was pre-
viously analyzed in the publications by Casari
et al.1 and Lichtarge et al.4

Results

Coverage of the three methods

The three methods can be used to find Tree-
determinant residues at various reliability levels,
corresponding to internal parameters that
regulate the stability of the predictions (see
Materials and Methods). Briefly, the S-method
gives a number of Tree-determinants taking into
account certain cut-off values: the average boot-
strapping value of the level to be considered, the
size of the jump in local maximum of Relative
Entropy between different levels and the percent-
age of sequence conservation. The MB-method has
an intrinsic score for every Tree-determinant
indicating the degree of correlation between the
mutational behavior of this position and the
mutational behavior the whole family. The SS-
method can work at different levels of confidence
by selecting a minimal number of residue clusters
in which a given alignment position has to be
present.

In the framework of the constraints of the
methods, it is always possible to have enough
Tree-determinants for the MB-method, in most
cases for the SS-method and in fewer cases for the
S-method. In the S-method the constraint that
reduces the number of possible predicted Tree-
determinants is the requirement that the subfami-
lies should have enough sequences, and with
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enough conservation in the different subfamilies
(see Materials and Methods). However, we selected
a large overlapping set of protein families for the
three methods that allows a fair comparison
among them (Table 1).

Tree-determinants and conserved positions are
predictors of heteroatom contacting residues

The most general hypothesis is that Tree-
determinant residues are responsible for substrate
binding specificity, and so they are expected to be
in contact with, or in close proximity to the bound
compounds in protein binding sites (see Introduc-
tion). To test this hypothesis we analyzed whether
Tree-determinant residues are close to bound
heteroatoms in three-dimensional protein struc-
tures, assuming the unavoidable errors introduced
by equating bound compounds (heteroatoms) and
functional binding sites.

We initially selected a list of 191 sequence non-
redundant protein families that bind heteroatoms

(excluding solvent). Owing to the restrictions of
the methods, each provided predictions for a
different subset of protein families from the initial
list.

The left column of Figure 1 shows the distri-
butions of the z-scores of all the Tree-determinants
in the list of proteins binding heteroatoms for each
method. Clearly Tree-determinants tend to be
closer to the heteroatoms than the rest of the
residues and the distributions are shifted toward
significantly shorter distances (negative z-scores).
Completely conserved positions also show this
tendency. The median and mode of these distri-
butions are shown in the Figure. Almost half the
proteins have their Tree-determinant residues
closer to the heteroatoms with z-score values better
than 21.0 and approximately the 3% of them have
z-scores better than 22.0. The median and mode
are selected as the appropriate Figures for these
non-symmetrical distributions that are poorly
described by the average value (see Discussion).
Table 1(a) shows the median and mode values of
the z-scores for a large set of protein families
analyzed with each method, and for a common
list of proteins predicted by the three methods
and the completely conserved positions (61 protein
families).

The SS-method is the one that produces slightly
worst results. The other two methods show similar
values, with slightly better predictions when there
are enough observations for the application of the
S-method. Therefore the last two methods (S- and
MB-methods) are more useful to predict the close-
ness between Tree-determinants and heteroatoms.
Completely conserved positions tend to be closer
to heteroatoms, so within our context they are
more likely to be involved in some functional
activity related to the heteroatoms.

In terms of direct contact with bound hetero-
atoms, Tree-determinants are predicting a direct
contact only in 13.5% of the cases for the S-method,
in 16.3% for the MB-method and in 11.0% for the
SS-method. Although that is better than the corre-
sponding random predictions, they are clearly
poor values. It is clear that the detected proximity
does not imply direct contact.

It is important to remember that we are applying
automatic methods to large collections of protein
families where some of the bound heteroatoms
may not represent the complete substrate and pro-
ducts in the binding sites, or the compounds may
not be related with the function of the protein.
This may reduce the reliability of the results since
any empty binding site or any compound binding
to an artificial site will be directly translated into
erroneous predictions.

We combined the predictions generated by the
three methods and the conserved positions (Table
2(a)). We consider separately the intersection
between the three methods and the addition of the
completely conserved positions to the predictions
of each method. The intersection of the predictions
of the Tree-determinant methods tends to improve

Table 1.

S MB SS CONS00

(a) Average, median and mode z-score values for distances
between predicted residues and heteroatoms
Commona(61) Average 20.72 20.73 20.59 20.95

Median 20.82 20.75 20.60 21.11
Mode 21.20 21.00 20.75 21.50

Allb (69) (149) (134) (185)
Average 20.76 20.63 20.57 20.90
Median 20.87 20.73 20.59 20.96
Mode 21.20 21.10 21.10 21.40

(b) Average, median and mode z-score values for distances
between predicted residues and annotated PDB sites
Commona (32) Average 21.02 20.76 20.80 21.11

Median 20.92 20.84 20.88 21.17
Mode 21.68 21.10 21.22 21.47

Allb (34) (87) (87) (108)
Average 21.03 20.98 20.97 21.11
Median 21.04 20.97 20.97 21.27
Mode 21.50 21.50 21.36 21.47

(c) Average, median and mode z-score values for distances
between pairs of Tree-determinats in the heteroatoms test set
Commona (61) Average 20.39 20.26 20.23 20.24

Median 20.53 20.27 20.22 20.32
Mode 21.10 20.50 20.30 20.60

Allb (69) (149) (134) (185)
Average 20.40 20.32 20.28 20.20
Median 20.56 20.30 20.29 20.23
Mode 21.10 20.80 20.50 21.20

(d) Average, median and mode z-score values for distances
between pairs of Tree-determinats in the PDB sites test set
Commona (32) Average 20.38 20.27 20.30 0.00

Median 20.41 20.24 20.27 21.11
Mode 20.50 20.56 20.32 20.40

Allb (34) (87) (87) (108)
Average 20.28 20.32 20.26 20.07
Median 20.46 20.48 20.33 20.06
Mode 20.50 21.00 20.50 20.45

a Averge, median and mode calculated on the list of proteins
to which all the methods can be applied (with in brackets).

b Average, median and mode calculated on the individual list
of proteins that fulfil the requirements for the application of
each methods (with in brackets).
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the results by lowering the z-scores in most cases.
This indicates that the residues predicted by two
of the methods or by the three of them (fewer
cases) form a more significant set of functionally
important residues according to the criteria we are
following here. This also implies that the three
methods capture relatively different sets of func-
tional residues.

The addition of the conserved positions to the
predictions of the Tree-determinant methods tends
to improve the results of the methods by decreas-
ing the z-scores, and tends to worsen the results
for the completely conserved positions. Results
that support the known relation between con-
served positions and binding sites.

Figure 2(a) shows the predictions of the three
methods and the completely conserved positions
for phthalate dioxygenase reductase (PDB code:
2pia), which is a prototypical iron–sulfur
flavoprotein.20 The heteroatoms, in this case, are
an iron–sulfur (Fe2S2) cluster and an FMN pros-

thetic group. About one third of the total number
of predicted Tree-determinants and conserved pos-
itions coincide with the annotated functionally
important sites belonging to the iron–sulfur bind-
ing loop (residues 271–280) and, hence, they are
binding the heteroatoms. All the Tree-determinants
predicted by the three methods are clearly grouped
around the iron–sulfur cluster whereas the
conserved residues are distributed around the
iron–sulfur and FMN groups.

Tree-determinants and conserved residues are
predictors of positions involved in different
types of biological function

The three methods were also tested on a list of
112 non-redundant protein families with annota-
tions for functionally important sites (SITE records
in PDB). We again have a set of proteins predicted
by each method and a set common to the three of
them and the completely conserved positions.

Figure 1. Distributions of the
z-scores of distances for all Tree-
determinants. The results include
all the proteins to which it was
possible to apply each one of the
methods (not the common list). The
evaluation has been carried out for
the heteroatoms and the annotated
sites test sets. The vertical lines
mark z-score ¼ 0 (random predic-
tions). In the upper right part of
each plot are shown the median of
the distribution, the mode, the per-
centage of predicted residues with
z-score better than 22.0 and the
percentage with z-score better than
21.0, respectively.
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Although the annotations for the functionally
important sites may be incomplete, this approach
complements the previous one (heteroatom
binding, Results) in the absence of a definitive
criterion of functionality. Therefore, we aimed to
assess the functional significance of the predicted
Tree-determinants and conserved amino acids
regarding their distances to the annotated
positions.

We carried out a z-score analysis similar to that
performed previously, but instead of the distances
from the predicted positions to the heteroatoms,
we considered the distances from the predicted
positions to the residues annotated as SITE in
PDB. In some cases, certain predicted positions
coincide with the annotated positions, but in most

Figure 2. (a) Predicted Tree-determinant and con-
served residues for the protein phthalate dioxygenase
reductase. Phthalate dioxygenase reductase (PDB code
2pia) is an iron–sulfur flavoprotein used to illustrate a
typical case of prediction of Tree-determinant residues
contacting heteroatoms. The heteroatoms of this protein
(iron–sulfur cluster—top in the Figure and FMN—
bottom) are in grey and full-atom spacefill represen-
tation. For the predicted Tree-determinants and con-
served residues only the Ca is shown. The completely
conserved residues are drawn in yellow. The residues
predicted by the MB-method are in red, the ones pre-
dicted by the S-method in green and the ones predicted
by these two methods in orange. The residue predicted
by the SS and S methods is in blue. The positions
predicted by the three methods are in purple. (b) Predic-

Table 2.

CONS00
(union)

CONS10
(intersection) SS MB

(a) Combination of the three Tree-determinant prediction
methods and conserved positions for the heteroatoms test set
SS 20.96 21.58

129 72
MB 20.71 22.26 21.56

143 23 48
S 21.32 21.39 1.64 21.78

68 39 42 17

(b) Combination of the three Tree-determinant prediction
methods and conserved positions for the PDB site test set
SS 21.54 21.85

83 47
MB 21.35 22.03 21.22

78 13 34
S 21.28 20.72 21.13 21.04

33 19 22 13

The Table show the results of the intersection of the residues
predicted by each pair of methods and the addition of the com-
pletely conserved positions to the predictions of each method.
The results are in the form of a matrix in which each entry corre-
sponds to the intersection of two methods. For each intersection,
the mode and the number of common proteins are shown. For
the intersection with conserved residues, the positions with con-
servation .90% (HSSP VAR , 10) were used because there is
no intersection between completely conserved residues
(conservation ¼ 100%; HSSP VAR ¼ 0) with Tree-determinants.

tion of three Tree-determinants and the completely con-
served positions for endonuclease III. Endonuclease III
(PDB code 2abk) has two annotated SITES in PDB:
K120/D138 involved in DNA glycosylase and lyase
activities; and K191, involved in DNA binding. The resi-
dues of these annotated sites are in grey, pink and
brown (see below) and full-atom representation. For the
predicted Tree-determinants and conserved residues
only the Ca is shown. The completely conserved pos-
itions are in yellow. The predictions of the MB-method,
the S-method and the SS-method are represented in red,
blue and green respectively. The residue in pink is a
completely conserved position that is annotated as a
functional site and the one in brown is predicted by the
MB-method and also annotated as SITE.
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cases the predicted positions co-localize with the
annotated positions (right column in Figure 1).
These tendencies are similar to the ones observed
for the case of the heteroamons (Figure 1, left
column).

In general, the results are encouraging. Unfortu-
nately, the common list of proteins with alignments
suitable for the three methods and the conserved
positions is short (32 families), which compromises
the statistical reliability of results based on this list.

In Table 2(b) (combination of the methods) we
see a similar situation as in the case of the hetero-
atoms. The intersection of the Tree-determinant
methods improves the results when we consider
the distance from the predicted Tree-determinants
to the annotated positions. The addition of the
completely conserved positions to the predictions
of the Tree-determinant methods improves the
results of the previous methods at the expenses of
reducing the accuracy of the predictions based on
the conserved positions alone.

Figure 2(b) shows the predictions of the three
Tree-determinant prediction methods and the com-

pletely conserved positions with the example of
endonuclease III (2abk),21 which has three function-
ally important residues annotated as SITE records
in PDB (positions 120, 138 and 191). One of the
completely conserved positions coincides with one
of the annotated sites (138) and one of the residues
predicted by the MB-method also coincides with
one of the sites (120). The SS and MB methods
have predictions close to the PDB sites, but some
of them are also far apart (in Figure 2(b), see for
example positions 51, 55, 81, 65 and 104). Even if
we consider them as erroneous predictions, they
may be involved in other functions not associated
with the annotated SITEs. The residue predicted
by the S-method (189) is close to one of the anno-
tated sites (191). All the conserved residues but
one are quite close to the annotated sites.

Distance between predicted positions

In both cases, the predictions for the heteroatom
list and the PDB SITE list, we also considered the
distances between the predicted positions

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 

  
  

   
  

 
  

  
 

  
  

 

  
  

   
  

 
  

  
 

  
  

   
  

 
  

  
   
  

 
  

  
 

  
  

 
  

  
 

  
  

   
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
   
  

 
  

  
 

 
      

   
     

 
        
 

   
      
  

   
  

   
  

      
   

   
 

   
   

  
   

   
 

   
   

 
   

   
 

   
   

  
   

   
   

   
  

   
   

 
   

   
  

   
   

  
   

   
 

   
   

 
   

   
 

   
   

 
   

   
  

   
   

 
   

      
   

   
   

   
   

 
   

   
  

   
   

 
   

      
   

  
   

   
 

   
   

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
   
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 
  

  
 

  
  

 

Figure 3. Average Xd values for proteins with various types of heteroatoms. The results are presented separately for
the MB-method, S-method, SS-method and completely conserved positions. The analysis was performed on the longest
list of proteins to which each method could be applied. The names of the heteroatoms are in PDB nomenclature.
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(Tree-determinant and conserved positions) to test
whether they show a tendency to cluster in the
three-dimensional structure.

For all the methods and the two test sets (hetero-
atoms and SITEs), the z-score values reveal only a
slight tendency to cluster (Table 1(c) and (d)). This
may be due to the presence of: (i) more than one
binding region in the protein, involving more than
one heteroatom, (ii) conformational changes in
protein structures upon protein interaction that
will separate residues that form part of a defined
binding site, and (iii) large binding sites where the
predicted residues are far apart.

Dependence of the predictions on the type
of heteroatom

The heteroatoms include a broad range of chemi-
cal compounds crystallized with protein macro-
molecules. The average predictive power for all
the proteins classified by type of heteroatom is
shown in Figure 3 for the MB, S and SS methods,
and for the completely conserved positions. The
Xd average values (See Materials and Methods)
for each type of heteroatom are calculated for each
method based on its own protein list. The
S-method is the one with the fewest observations,
owing to the restrictive conditions imposed for its
application.

The results for all the methods lead to a similar
conclusion: large compounds (e.g. nucleotides and
heme groups) are better predicted than small ones
(ions). This result is not an artefact of the Xd calcu-
lation, since this parameter corrects by the size of
the binding site and that of the protein. These
results may be due to the fact that in certain cases
small ions can be present as a result of the crystal-
lization of the protein, and therefore functional
residues are not expected to be associated with
these ions. On the other hand, sugars, even if they
are large, are not well predicted, which is not sur-
prising since in many cases they are not part of
binding sites but part of protein post-translational
modifications (e.g. glycosylation) that cover the
protein surface without a “localized” functional
significance.

If we exclude from the calculations those ions
and heteroatoms that are not directly related with
biological binding activity, the z-score (mode)
values become better than the ones obtained for
all proteins (Table 1(a)): S-Method: 21.62; MB:
21.63; SS: 20.46 and CONS0: 21.59.

A relevant biological example

As described in Introduction, we used the
manual version of SequenceSpace for the predic-
tion of specificity regions in proteins of the ras
superfamily. Other authors have also used this, or
very related proteins such as a subunits of G
proteins, to test their predictions.1,4,22 Therefore,
we analyzed the automatic predictions of Three-
determinants in this protein family (Figure 4).

The S-method, with a bootstrap cut-off of 70%
(see Materials and Methods), predicts as Tree-
determinant position 28, which is a key component
of the G1 region involved in the binding to the
GTP-Mg cofactor.

The MB-method, with a correlation value cut-off
of 0.6, predicts residue 37 in first position (highest
correlation value), which is a well-known residue
related with the change of specificity between ras
and ral proteins,14 and positions 22, 54, 65, 70, 73,
81 and 144, all of which are around the GTP bind-
ing site and the binding site for various ras effec-
tors (switch I and II regions). From this set of
residues, positions 37, 22, 54, 81 and 144 are clearly
detectable by direct analysis of the SequenceSpace
output by human experts.

The SS-method again includes residue 37, eight
residues that are commonly detected by manual
analysis of SequenceSpace (12, 18, 20, 22, 40, 56, 68
and 75) and another five residues that are particu-
lar to this method (9, 17, 64, 82, and 130). As with
the other methods most of these residues are
around the GTP binding site and/or the binding
region for different ras effectors.

The conserved positions in all the known
sequences (not shown in the Figure) belong to the
GTP binding site, and the connection with various
effectors (switch regions). Conserved residues also
form part of the structural core of the protein that
is substantially different of the binding site.

It is important to realise that the large part of the
molecule with a clear functional activity related
with the specific binding to other proteins (effec-
tors, inhibitors and activators14) is well predicted

Figure 4. Functional residues predicted by the three
methods for the ras protein (PDB code 5p21). The GTP
group is in full-atom representation and coloured grey.
For the predicted Tree-determinants only the Ca is
shown. The residues predicted by the S, MB and SS
methods are in blue, red and green respectively. The resi-
dues predicted by both, the S and MB methods, are in
orange.
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by all three methods. Unfortunately, the infor-
mation about this protein–protein binding site is
not present in the PDB records nor is it related
with a heteroatom, therefore the automatic evalu-
ation scheme used here will count these correct
predictions of functional sites as errors of the
methods. This situation could be common since
few proteins have been co-crystallized with their
effectors.

Discussion

The completely conserved positions in multiple
sequence alignments are traditionally considered
as likely candidates for functionally important
sites.23 Indeed their persistence during long
periods of time has been interpreted as conse-
quence of strong evolutionary pressure. We explore
here other sequence patterns indicative of positions
involved in functional activity of the whole protein
family and determine the molecular basis of the
functional specificity of their corresponding
subfamilies.

Indeed, the difference between subfamily-
specific residues (Tree-determinants) and con-
served positions can be regarded as a product of
the limited number of members known for a
given family. In this sense, a conserved position
may become a Tree-determinant as more sequences
are added to the family. That is, the more
sequences there are in a multiple alignment, the
more likely we would be to find real Tree-determi-
nants and conserved positions, since the definition
of the subfamilies would become clearer.

Tree-determinant positions encapsulate the con-
cept of evolutionary importance by their conserva-
tion in subfamilies and the concept of functional
specificity by their difference between subfamilies.
As mentioned in Introduction, Tree-determinants
has been analyzed by several authors and, in par-
ticular examples, they have been shown to be func-
tionally important positions for various protein
families.1 – 6,9,10,12

In a few relevant cases these predictions have
been used as a guide for the experimental switch
of specificity between members of protein sub-
families: rab5 and rab6,13 ras and ral14 and Ga,22

These cases have required the expert use of the
Tree-determinant detection methods. Despite the
interesting work performed in key examples, the
statistical assessment of the role of Tree-determi-
nants as part of specific functionally important
sites has not been tested systematically.

Here, we propose three different automatic
methods to locate Tree-determinant positions that
can serve as predictors for functionally important
sites. Although these methods do not incorporate
the biological knowledge of the user, they may be
used for automatic predictions of functionally
important sites in long lists of protein families, in
systematic studies, and coupled to the pipeline of
genome sequencing.

Various attempts have been made to construct
comprehensive databases of annotated protein
functional sites8 and/or protein complexes. But
there is a general lack of publicly available func-
tional residue databases, which hinders the direct
testing of methods for the prediction of functional
sites.

For the current study, we tested three indepen-
dent methods on two non-redundant lists of single
chain protein families, one in which the binding
sites are identified by the presence of various het-
eroatoms (191 protein families), and another in
which functional sites have been manually anno-
tated in the corresponding protein structures (PDB
SITE records; 112 protein families).

For the first list, we assumed that heteroatoms
bound to protein structures play some functional
role. Considering as functional sites related to het-
eroatoms those that are close or bind them directly,
we measured the distance from the predicted resi-
dues to the heteroatoms, correcting properly by
the sizes of the protein and the binding site (see
Materials and Methods). Regarding the second
list, we took into account the distance from the pre-
dicted residues to the annotated positions.

We also considered the distances between the
predicted residues to test whether they form clus-
ters in the three-dimensional structures. That
could indicate that these residues belong to an
active site not related either with heteroatoms or
with PDB sites, for example to protein–protein
interaction surfaces.24

Despite the difficulties associated with binding
site definition (binding of effectors or to cofactors
not present in the protein crystal structures), the
results clearly show a tendency of automatically
detected Tree-determinants to be part of binding
sites (proximity and to a lesser extent direct con-
tact). But the Tree-determinants form clear clusters
only in a few cases.

The distribution of the z-scores (Figure 1) are
clearly skewed, with a long tail on the bad score
regions (high z-score) that includes the poor pre-
dictions in many cases related with the insuffi-
ciency of the annotation of binding sites,
described below. To assess the significance of the
results we have used the standard median and
mode estimators, since the mean is not an appro-
priate descriptor of asymmetrical distributions. In
almost half of the cases the z-score values are better
than 21, corresponding to mode values ranging
from 20.9 to 21.4 and medians from 20.7 to
21.4 (Table 1 and Figure 1).

The relative low tendency of some proteins (tails
of the distributions in Figure 1) to have predicted
Tree-determinants close to heteroatoms or PDB
sites, is not surprising since the large set selected
for this experiment contains a number of impreci-
sions, i.e. functional sites not completely described
in the PDB records, sites not completely conserved
by the bound heteroatoms, and incomplete experi-
mental data on the bound heteroatoms. These
imprecisions, which are difficult to solve for the
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full collection of proteins, should not prevent us for
considering the potential for correct predictions
and significant results shown for the majority of
the proteins. This problem is illustrated by the
case of the heteroatoms that cannot be predicted
given their lack of biological significance. In fact,
even the completely conserved residues are not
significantly close to all the defined binding sites.
Moreover, the results with sites described in PDB
files are slightly better than the ones obtained for
the sites described by their interaction with hetero-
atoms, since the quality of the annotations is
slightly better for the manually annotated PDB
files than for the sites described only by their
proximity to bound heteroatoms.

We illustrated our results with concrete examples
with known biological data, a heteroatom binding
protein (iron–sulfur flavoprotein) and a endo-
nuclease with PDB SITE annotation. In these
examples, the predicted Tree-determinants and the
conserved positions are close to the heteroatoms
and to the PDB annotated sites, respectively.

We also followed in detail the predictions for the
ras superfamily of GTPases, which has been used
extensively as an example in most of the previous
publications,1,4,10 and carefully analyzed in several
experimental approaches to the switch of
specificity.13,14 In this case, it is clear that the three
methods, plus the conserved positions, point to
the main interaction sites, where the ras proteins
bind to specific effectors involved in the regulation
of the GTP hydrolysis and exchange and also to the
GTP binding site.

As a general tendency, the intersection of the
predicted residues by two of the methods or by
the three of them improves the results (decreases
the values of the z-scores) regarding the distances
from the predicted residues to the heteroatoms (or
PDB sites). The addition of the conserved positions
to the prediction methods improves the results in
terms of distances from the selected positions to
the heteroatoms (or PDB sites), decreasing the
z-score values, reflecting the predictive power of
the conserved positions.

We also analyzed the results of the methods in
terms of the type of heteroatoms involved in the
predictions (see Results) and noticed a common
tendency of all methods to predict Tree-determi-
nants associated with large heteroatoms (except
for sugars) rather than with small ones (ions). This
tendency was obvious after correcting the dis-
tances from the predicted positions to the hetero-
atoms by the size of the proteins and of the
binding sites (Xd values). Taking into account that
in many cases the protein crystals include some
ions which are not functionally important for the
proteins, and in other cases sugars are involved in
some post-translational modifications (like
glycosylation) without localized functional mean-
ing, we could explain that the best predictions are
associated not with ions or sugars, but with other
bulky heteroatoms which appear in the protein
crystal and are part of the functional mechanism

of various proteins and therefore related to the
functional specificity of the protein family.

It is interesting that the accuracy of the com-
pletely conserved positions as predictors of func-
tionally important sites also depends on the type
of heteroatom, in a way similar to the predictions
of the Tree-determinant methods (see Results).
With these results in hand we propose the use of
Tree-determinant detection methods to predict
functional sites, in particular those associated with
biochemical functions (like the ones that require
the presence of large cofactors).

In the future, we aim to use our automatic
methods to predict binding sites in large collections
of known structures (structural genomics) or protein
sequences (complete genomes). At the same time,
these methods can be used to explore the nature of
the Tree-determinants involved in certain functional
activities of different protein families, for example,
to explore a possible correlation between heteroatom
type and subfamily specificity.

Materials and Methods

The Level Entropy Method (S-method)

Phylogeny of a protein family

The main idea of this method is to explore automati-
cally different possibilities of Tree-determinants, in the
sense of positions that are conserved (85% conservation)
within a subfamily, and differ between subfamilies,
regardless of the physico-chemical characteristics of the
residues. Since the method aims to analyze different
divisions of the protein family in subfamilies, it incorpor-
ates a phylogenetic representation of the protein family
and an appropriate random model.

We use as a starting point a phylogenetic tree of the
protein family generated by the ClustalW program25

from the HSSP19 multiple sequence alignment of that
family. Then, we analyze different levels of division of
the tree, starting from the first division of the whole
protein family that ClustalW produces and going in the
direction of more specialized divisions. In this way, each
level defines a specific division of the family into sub-
families to be analyzed. Figure 5 shows the first four
levels of a tree, considering several possibilities of Tree-
determinants. The fact that ClustalW generates and un-
rooted tree does not affect our goal, since we are using
the tree just as a reference for grouping the proteins of
the whole family in subfamilies.

As the main objective of this analysis is to study the
Tree-determinants at each level, we regarded subfamilies
as branches with more than two sequences. We pay
attention only to the first half of the number of levels,
since we aim to relate Tree-determinants with functional
important positions for the whole family, and the more
we advance in the division of subfamilies, the more
likely we are to lose sequences on the way, according to
the subfamily definition we imposed above.

Finally, we focused on the stable levels of the tree,
particularly the first stable level. As a measure of
stability we use the average of the bootstrapping values
belonging to each branch of the division level, consider-
ing a level stable if the average of bootstrapping values
exceed 75%.
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Entropy analysis

Once we have the division of the protein family in
subfamilies at each level, we calculate the Tree-determi-
nants at those level, requiring 85% or more conservation
in each subfamily. We use the HSSP19 multiple sequence
alignment.

However, as subfamilies are further divided, the num-
ber of conserved positions in each subfamily tends to
increase, and the probability of finding a Tree-determi-
nant by chance also tends to increase. For this reason,
we introduce the principle of Relative Entropy in order
to normalize the number of Tree-determinants by the
number of conserved positions in each subfamily. Rela-
tive Entropy (also known as the Kullback–Leibler dis-
tance in Information Theory)15 could be thought of as a
distance between two probability distributions. When
one of the distributions is the joint probability distri-
bution of n random variables and the other is the pro-
duct of the probability distributions of each of the n
variables, the Relative Entropy becomes an entropy
measurement called Mutual Information, and it gives us
an idea about how independent the n random variables
are. In our problem, we introduce Relative Entropy (or
in this case Mutual Information) in order to consider the
distance of the “probability distribution” of Tree-deter-
minants at a certain level from the product of probability
distributions of conserved positions in each subfamily of
that level, where instead of probability distributions we
used frequencies.

Suppose we have a level with n subfamilies, then
Relative Entropy is defined as

HðnÞ ¼
X

x1;x2;…;xn

pðx1; x2;…; xnÞlog
pðx1; x2;…; xnÞYn

i¼1

pðxiÞ

x ð1Þ

where the sums are taken over the 20 aminoacids, and
pðx1; x2;…; xnÞ stands for the frequency of obtaining by
chance a Tree-determinant where in the ith subfamily
one finds the residue xi·p(xi) are the frequencies of obtain-
ing by chance in the ith subfamily a conserved position
with the residue xi.

In other words, Level Relative Entropy considers
implicitly the number of Tree-determinants of each type,
corrected by the number of conserved positions that
define that type of Tree-determinant at each subfamily.

Of all the stable levels (bootstrap $75%), we select the
first that represents a jump or a local maximum of
Relative Entropy. That will be our optimal level within
the context of this analysis. Certain protein families do
not have optimal levels. That is why it is possible to
obtain results only for part of the list of non-redundant
protein families (see Results).

Finally, note that we consider not only those Tree-
determinants with the conserved residues different in
each subfamily, but we also include conserved residues
common to two or more subfamilies.

Figure 5. Schema of the Level
Entropy Method (S-Method). The
Figure represents different
divisions of a protein family into
subfamilies obtained by cutting the
phylogenetic tree at different levels.
The Tree-determinant positions at
each division level are shown. The
selected level (red) exhibits the
local maximum of the Relative
Entropy.
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The Mutational Behavior Method (MB-method)

This method takes into account that, given the
definition of Tree-determinants given in Introduction,
the variation pattern of such positions ought to reflect
the variation pattern of the entire alignment (Figure 6).
So, the “mutational behavior” of the Tree-determinant
positions would be similar to the mutational behavior of
the whole family.

One the one hand, the mutational behavior of the
family is represented by a matrix whose elements are
the homologies between each protein pair. On the other
hand, the mutational behavior of each individual align-
ment position is represented by a matrix whose elements
are the homologies between the pairs of residues at that
position (Figure 6). These homologies are the substi-
tution values taken from the McLachlan substitution
matrix.26 To test whether these two sets of data represent
a common pattern of variation, we use the Spearman
Rank-Order Correlation Coefficient defined as follows:27

r ¼

X
i

ðRi 2 �RÞðSi 2 �SÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðRi 2 �RÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðSi 2 �SÞ2
r ð2Þ

where Ri and Si are the rank order values of the matrix
elements belonging to the protein change matrix and

position change matrix respectively (Figure 6). �R and �S
are their average values.

A high value of this correlation coefficient for a given
position means that the variation pattern of that position
resembles the variation pattern of the whole family and
therefore, that position is a good candidate for a Tree-
determinant within the context of the present method.

For this study, we took the 10% of residues with high-
est correlation value as the predicted Tree-determinants.

The method does not use any explicit representation
of the family phylogenetic tree but the phylogenetic
information is contained in the protein homology matrix
(distances between sequences). Therefore, this method is
independent of any tree-construction algorithm. The
method does not have as input specific divisions of the
protein family into subfamilies, but those divisions are
implicitly taken into account in the protein change
matrix.

The idea was somehow inspired by our own indepen-
dent way of calculating “correlated mutations”.28 Indeed,
using two position matrices instead of a position matrix
against a protein matrix, we calculate a correlated
mutation between these two positions. Other authors
have developed approaches to compare the variation of
the full-length proteins with that of a given segment of
those proteins in order to search for regions whose
variability or conservation differs from that of the whole
family.29 More recently Landgraf et al.3 developed a

Figure 6. Schema of the Muta-
tional Behavior Method (MB-
method). The similarity between
the mutational behavior of a pos-
ition and the mutational behavior
of the whole family is evaluated for
each position in the multiple
sequence alignment. The muta-
tional behavior of the position is
represented by a matrix containing
the similarities for all pairs of resi-
dues occupying that position. The
mutational behavior of the whole
family is represented by a matrix
containing the overall similarities
for all pairs of proteins in the
family. The similarity between the
mutational behavior of the position
and the mutational behavior of the
family is evaluated as the similarity
between these two matrices using a
rank-correlation criterion.
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similar method where a global similarity matrix is com-
pared with a regional (surface patch) similarity matrix
(see Introduction).

The SequenceSpace automation method (SS-
method)

The final SequenceSpace output for residues is a list of
the coordinates respect to the principal axes (the first six
principal axes by default) for every amino acid type at
each position in the alignment.1

We cluster this multidimensional cloud of points
based on the distances between them to form groups of
residues in similar positions of the multidimensional
space. The algorithm calculates an optimal number of
clusters and elements that correspond to them. The
algorithm starts by selecting a random point as hub of
the first cluster and the most distant point in the multi-
dimensional space as the hub of the second cluster.
Then, the points are assigned to clusters of the closest
hub. If there is any point more distant of its hub than
the average distance between hubs, a third cluster is
created with the point farer apart from its hub as new
hub. This process is iterated until no additional points
match that condition on the distance to the hubs.

Once the clusters are determined, the one containing
the very variable residues, that is usually the largest, is
excluded since these residues contain less information
about the structure of the family. Within the remaining
clusters, the algorithm looks for positions represented
by different amino acid types in different clusters
(residues conserved and different between subfamilies).
Finally, we select among them the most informative pos-
itions by picking the ones with a distance from the origin
of coordinates higher than half of the maximum distance
from any point to the origin.

Completely conserved positions

Although the methods described above deal with
Tree-determinants, we also analyzed the completely con-
served positions (defined as having zero variability in
the HSSP files). The comparison between Tree-determi-
nants and completely conserved positions as predictors
of functionally important sites is discussed in the text.

z-Score analysis

To measure the significance of the closeness between
Tree-determinants and heteroatom(s) (or PDB annotated
site(s)) in a given protein, we consider the z-scores of
the distances of each Tree-determinants to that hetero-
atom (or PDB annotated site) respect to the distributions
of distances from all the protein residues to the hetero-
atom (or PDB site). To measure how significantly close
the Tree-determinants are among themselves we do the
same z-score calculation but for the distances between
Tree-determinants with respect to the distribution of
distances among all pairs of residues in the protein. The
z-score is defined as follows:

z ¼
r 2 �r

s
ð3Þ

where, in the first case, r is the distance of each Tree-
determinant to the closest heteroatom (or PDB site), �r is
the average value of the distances of all the protein resi-
dues respect to the same heteroatom (or PDB site), and
s is the corresponding standard deviation. In the second

case (evaluation of closeness between predicted Tree-
determinants) we have the same meaning for all the
symbols except for the fact that we are considering now
distances among the Tree-determinants respect to the
distances of all pairs of residues in the protein.

In both cases, we calculate the average value of the
z-scores for all Tree-determinants in one protein, and
the average of these average values in a set of proteins,
to have single values of accuracy for one protein and for
a set of proteins respectively (see Table 1). We also calcu-
late the median and mode of the z-score values.

Xd analysis

In the previous section, we introduced a z-score
analysis to evaluate how significantly close each of the
predicted residues were to the heteroatom, to the PDB
annotated site or to other predicted residue. However, if
instead of single values of distance between a predicted
residue and a heteroatom (PDB site or other residue),
we want to assess the significance of the distances of a
large set of predicted residues (sub-population) respect
to all distances (population), we use the concept of Xd
introduced in a previous publication.24

Xd ¼
Xi¼n

i¼1

Pic 2 Pia

dixn
ð4Þ

where n is the number of distance bins in the distri-
butions (there are 15 equally distributed bins from 4 Å
to 60 Å); di is the upper limit for each bin (corrected to
60). Pic is the percentage of predicted residues with dis-
tance to the heteroatom (PDB site, or other residue)
between di and di21, and Pia is the same percentage for
all residues in the protein. Defined in this way, Xd . 0
indicates positive cases for which the population of pre-
dicted residues is shifted to smaller distances with
respect to the population of all residues.

Once the Xd value is calculated for the predictions of
each method for each protein in the list (depending on
the method), we calculate the average value of Xd over
those proteins that bind the same heteroatom and dis-
cuss these data obtained for each type of heteroatom
(see Results).
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