
doi:10.1016/j.jmb.2005.07.005 J. Mol. Biol. (2005) 352, 1002–1015
Assessing Protein Co-evolution in the Context of the
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The identification of the whole set of protein interactions taking place in an
organism is one of the main tasks in genomics, proteomics and systems
biology. One of the computational techniques used by many investigators
for studying and predicting protein interactions is the comparison of
evolutionary histories (phylogenetic trees), under the hypothesis that
interacting proteins would be subject to a similar evolutionary pressure
resulting in a similar topology of the corresponding trees. Here, we present
a new approach to predict protein interactions from phylogenetic trees,
which incorporates information on the overall evolutionary histories of the
species (i.e. the canonical “tree of life”) in order to correct by the expected
background similarity due to the underlying speciation events. We test the
new approach in the largest set of annotated interacting proteins for
Escherichia coli. This assessment of co-evolution in the context of the tree of
life leads to a highly significant improvement (P(N) by sign testw10E–6) in
predicting interaction partners with respect to the previous technique,
which does not incorporate information on the overall speciation tree. For
half of the proteins we found a real interactor among the 6.4% top scores,
compared with the 16.5% by the previous method. We applied the new
method to the whole E. coli proteome and propose functions for some
hypothetical proteins based on their predicted interactors. The new
approach allows us also to detect non-canonical evolutionary events, in
particular horizontal gene transfers. We also show that taking into account
these non-canonical evolutionary events when assessing the similarity
between evolutionary trees improves the performance of the method
predicting interactions.
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Introduction

The network of protein–protein interactions of a
given organism (“interactome”) contains extensive
information about its biology, since protein inter-
actions are involved in most cellular processes
(structural macromolecular complexes, signalling
lsevier Ltd. All rights reserve

Design Group,
CNB-CSIC), Campus
Spain.
tal gene transfer; 16 S
the small subunit of
ame; GO, gene

ing author:
cascades, metabolism, transcription control, etc.).
Experimental techniques for the determination of
protein interaction, mainly variations of the yeast
two-hybrid system1 and affinity purification,2,3

have been applied in a high-throughput approach
aiming to cover as much as possible of the
interactome of a number of model organisms.4–7

Knowledge of the complete interactome allowed
some of the first studies of biological networks from
a systems biology point of view, extracting import-
ant data on the topology, connectivity and evolution
of the protein interaction network.8–14

Several computational techniques have emerged
to complement these experimental approaches.
These computational techniques can be used to
guide experiments restricting the number of pairs to
test experimentally,15 to filter a set of experimental
d.
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interactions and to combine it with other infor-
mation in order to increase its accuracy,16 or to
predict interactions purely in silico. Computational
methods for the prediction of protein interactions,
despite being cheaper and faster than their experi-
mental counterparts, have been shown to have
similar (or even higher) levels of accuracy than
those, when combined under certain circum-
stances.17 These methods are based on genomic or
sequence features related with interaction: con-
servation of gene neighbouring across genomes,18,19

domain fusion events,20,21 comparison of phylo-
genetic distributions (patterns of presence/absence
of genes in a set of genomes “phylogenetic
profiles”),22,23 correlated mutations,24 and simi-
larity of phylogenetic trees,25,26 among others.27–29

The fact that interacting (or functionally related)
proteins have similar phylogenetic trees had been
observed qualitatively for some families of ligand–
receptor pairs,30,31 and later quantified and tested in
large data sets of proteins and protein domains.25,26

The concepts behind this approach are that
interacting proteins bear a similar evolutionary
pressure (since they are involved in the same
cellular process), and that they are forced to adapt
to each other, both resulting in similar evolutionary
histories. This co-evolution has been observed not
only in the sequences but also in the gene
expression levels of the interacting proteins.32

The Goh & Cohen25 and Pazos & Valencia26

methods for predicting interactions are based on the
comparison of protein distance matrices (using a
linear correlation coefficient) instead of phylo-
genetic trees themselves. Since the exact compari-
son of phylogenetic trees is a complex and not fully
solved problem, the comparison of distance
matrices has been demonstrated to be a convenient
shortcut useful for the special case of predicting
protein interactions. This approach (mirrortree) has
been subsequently applied to many protein families
and followed by those who developed different
implementations and variations of it.33–38

The degree of similarity between the phylo-
genetic trees of two proteins can be influenced by
many factors beside the co-adaptation of the
proteins, the main one being the underlying
speciation process. Consequently, the trees of two
proteins have a certain “background” similarity
between themselves (regardless of whether the two
proteins interact), and with the canonical “tree of
life”. On the other hand, non-standard evolutionary
events (in particular horizontal gene transfer, HGT)
leave landmarks in the trees of the proteins
resulting in species far from where they should be
in the canonical tree and close to species not related
with them by the canonical phylogeny. Both factors
affect the similarity between trees and its appli-
cation for prediction of interactions.

Methods for detecting HGT look for abnormal
signals of transferred genetic material into the
Darwinian genomic background of species.39–41

Most of the methods can be classified into three
main categories based on the signal that they
analyse: DNA composition bias such as base-pair
frequencies or codon usage;40,42 abnormal sequence
similarities between distantly related species;43 and
phylogenetic incongruence of gene trees or species
distributions.44–46 While phylogenetic methods are
more accurate to detect ancient transfer between
distant species, those methods based on DNA
composition bias are more appropriate for detecting
and dating of more recent HGT events.40

The detection of these HGT events is also
important for the evolution-based prediction of
protein interactions: (i) a protein predicted to have
undergone HGT is not expected to have overall
similar trees with their interaction partners (except
those that have undergone the same HGTevent (see
next paragraph)); (ii) correcting by the canonical
tree of life (see below) is not appropriate for
proteins that have undergone HGT, since their
underlying speciation events have not followed that
tree. For these reasons, it is important to detect HGT
events prior to any evolution-based prediction of
protein interactions.
A special class of HGT is a group of genes being

transferred together.47HavingundergoneHGTmeans
that they form a self-contained functional module
(with limited dependence on other genes); and having
been transferred together suggests that they are
involved in the same (modular) function. Groups of
genes with such behaviour include genes related to
antibiotic resistance and single metabolic functions.
This is related to the concept of “selfish operon”.47,48

Here, we present a new approach for the co-
evolution-based prediction of protein interactions
which takes into account the information of the
canonical tree of life (the one derived from the 16 S
rRNA sequences) when assessing the similarity of
evolutionary histories. The similarity between the
trees of two proteins is corrected by this background
similarity. The new method also allows us to
concomitantlydetect features related tonon-standard
evolutionary events, like HGTandmodular cassettes
of related genes, in order to take them into account
when predicting interactions. We tested the method
in the largest repository of annotated Escherichia coli
interacting proteins available, statistically showing
that it is considerably better than the previous
approach on predicting protein interactions. We
apply this new method in a blind test to the whole
E. coli proteome, and propose functions for some
hypothetical proteins based on their predicted
interactors. We also demonstrate the applicability of
the method for the detection of non-standard
evolutionary events, and that this yields a better
performance in interaction prediction.
Results

Prediction of interaction partners

We tested the method for the detection of
interacting pairs of proteins in the whole set of
E. coli annotated interacting pairs in DIP.49 For each



Table 1. Overview of tol-mirrortree performance and
comparison with previous methods

A. Average values of percentage of false positives and ROC area

% False positives ROC area

mirrortree 23.4 0.71
mirrortree with tree
distances

21.9 0.73

tol-mirrortree 14.9 0.79

Results are shown for the old mirrortree method; for the same
method using distances extracted from the phylogenetic tree
(instead of sequence identities); and for tol-mirrortree, which uses
distances extracted from trees and corrects by the 16 S rRNA tree

B. For each pair of methods, P-values of the one-sided sign test for the
null hypothesis that there is no real differences in the performances
between both methods and that the observed differences are happening
by chance, against the alternative that method A is really better than
method B

B

A mirrortree
mirrortree tree

dist. tol-mirrortree

mirrortree
mirrortree
(tree dist.)

0.276

tol-mirrortree 5.60!10K6 1.91!10K5
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protein we obtained a list of pairs sorted by the
interaction score (rAB) (see Materials and Methods).
We evaluated the accuracy of the method by
evaluating the percentage of false positives, that is,
the percentage of proteins in the sorted list that
score higher than the highest scoring real inter-
action partner. The lower this parameter, the better
the prediction: a perfect method locating the true
interaction at the top of the list would produce 0%
false positives, whereas a random method would
produce around 50% false positives (true hit in the
middle of the list, on average). Additionally, we
calculated the receiver operator characteristics
(ROC) area derived from the list of each protein
(see below).

Figure 1 shows the results for the test set (118
proteins). For most of the proteins, the real
interactions are found at the top of the list. The
average fraction of false positives for the whole set
is 14.9% (median 6.4%). The number of pairs tested
for each protein is also indicated in the Figure (187
on average).

To evaluate the improvement with respect to the
previous version of the mirrortree approach26 we
applied that method to the same dataset obtaining a
level of false positives of 23.4%. Thus, the fraction of
false positives is reduced by 8.5% with this new
method. An “intermediate” method, which uses the
distances extracted from the phylogenetic trees
(instead of percentages of sequence identity
extracted directly from the multiple sequence
alignments, as the old method does), but without
correcting by the 16 S rRNA distances, yields 21.9%
false positives. So, the improvement comes both
from using distances extracted directly from the
trees (substitutions/site) and from the correction
with the 16 S rRNA distances, this last factor
yielding the largest contribution to the improved
accuracy (Table 1A) (see below).

For 23 of the 118 proteins (19.5%), the real
interactor is the highest score (0% false positives)
among the 166 (on average) pairs tested for each one
(leftmost in Figure 1(a)). For 45% of the proteins, the
level of false positives is lower than 5%. The score of
the top hit can be used as ameasure of confidence. If
we restrict to proteins where that top score isS0.97
(70 out of the 118 cases), the level of false positives
goes down to 12.4%. For the more restrictive cutoff
of 0.98 (35 cases) that figure is 11.4%.

As an example of a prediction, the method is
able to locate the right interaction between
P00575 and P00577 (b and b 0 chains of DNA-
directed RNA polymerase; SwissProt accession
numbers) as the first hit in the lists where both
proteins were tested, composed of 232 and 222
proteins, respectively.

Only seven of the 118 proteins have scores worse
than random (50%). The worst case (rightmost
column in Figure 1(a)) is P15046 (acetate kinase)
whose real interactor (P08839, phosphoenolpyru-
vate-protein phosphotransferase) is very low in the
sorted list. The way in which we are evaluating false
negatives is quite restrictive: the fact that a given
interaction is not annotated in DIP does not mean
that it is necessarily false. One example is P08374
(RNA polymerase omega), whose annotated inter-
action with RNA polymerase alpha is down in the
list, which produces a high percentage of false
positives, but which has a number of plausible
interactors at the top of the list, including P00583
(DNA polymerase III beta), P16921 (transcription
antitermination protein nusG) and other transcrip-
tion factors.

The percentage of false positives provides a
simple and intuitive way of evaluating the per-
formance of the method. A more general and more
formal way of quantifying this performance for
methods producing a sorted list of scores is to
calculate the area under an ROC curve. Those
curves represent the relationship between sensi-
tivity and specificity (also known as true-positive
and false-positive rates, respectively) of a prediction
method. They give an idea of the distribution of true
and false hits in a list sorted by a score. ROC curves
were calculated for the 118 proteins. A random
method, applied to a set of proteins, would produce
an average ROC area of 0.5 (regardless of the
number of true hits in the lists), whereas a
hypothetical perfect method would produce an
ROC area of 1.0. For lists with only one positive
(most of the cases, see Materials and Methods), the
ROC area and the fraction of false positives
provide the same measure (since ROC_area Z1.0-
frac._false_pos.). As we have more positives in the
list, the probability of some of them to be high in the
list increases by chance and hence the fraction of
false positives decreases. This is why we introduce
the ROC area, which is independent of the number



Figure 1. Results for the DIP dataset of E. coli interacting proteins. (a) Each of the 118 proteins is represented by a bar. The height of the bar represents the percentage of false
positives, that is, the fraction of proteins with score higher than any annotated interactor. The random fraction of false positives (50%) is indicated with a black line. The average
(14.9%) and the median (6.4%) are indicated with a red line and a green line, respectively. The number of pairs calculated for each protein is indicated with a dot. (b) Percentage
of false positives a user has to accept (Yaxis) in order to find the real interactor for a given fraction of the dataset (X axis). The equivalent numbers for the old mirrortreemethod,
and for this old method with distances extracted from the phylogenetic tree are also shown. (c) Same representations as in (b) using the ROC area as a measure of accuracy.
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of positives in the list, as an additional measure to
consider these cases, whilst maintaining also the
percentage of false positives as a more intuitive
parameter. The new tol-mirrortree method produces
anaverageROCareaof 0.79,whereas the correspond-
ing figure for the oldmirrortree is 0.71 (Table 1A): 12%
of proteins produce an ROC area of 1.0 (perfect
predictions); 93% have ROC areas higher than 0.5
(random).

A potential user of this method who aims to
identify interactors for a large set of proteins
(interactome) has to decide on a balance between
accuracy of the prediction and number of cases
predicted (coverage). Figure 1(b) shows the percen-
tage of false positives the user has to accept in order
to find a real interactor for a given fraction of the
dataset. For example, in order to find a real
interactor for half of the cases, a level of 6.4%
false positives has to be accepted. The
equivalent figure for the old mirrortree method is
16.5%. Figure 1(c) show the equivalent
numbers using the ROC area as a measure of
performance.

Although all the results presented here are
protein-based (performance is evaluated for the
list of each protein independently), we also
constructed global ROC curves for both methods
combining all the 19,991 pairs together regardless of
the protein they come from (Figure 2(a)). These
curves show that tol-mirrortree has a higher dis-
criminative power than mirrortree, especially in the
more important region of high scores (top of the
lists). Interestingly, mirrortree shows a slightly
better discriminative power, recovering positives
down in the lists (low scores). The global ROC
areas are 0.74 and 0.72, respectively. We also
attached correlation values to some points in
these curves, which allows one to obtain values
of specificity and sensitivity from the raw scores
of the methods in a hypothetical large-scale
experiment. Figure 2(b) shows the same curves
but using, instead of the correlation values
themselves, the z-scores they have with respect
to the rest of the pairs calculated for a given protein.
The ROC areas in this case are 0.74 (tol-mirrortree)
and 0.70 (mirrortree).

These case-by-case and global experiments illus-
trate two possible scenarios for the application of
this method. First, when one is testing a protein of
interest against a relatively small number of
possible partners that include the real interactor(s).
In this case, the user would expect the figures of
percentage of false positives, etc. reported in
Figure 1 and Table 1. The second scenario is closer
to a high-throughput all-against-all experiment not
focused on a given protein. Here, the user can
obtain from the ROC curves of Figure 2 the
expected values of specificity and sensitivity cutting
the whole list of calculated pairs by a given
correlation value, and play with this threshold
depending on the number of positives he/she
wants to recover and the negatives he/she can
tolerate.
To assess whether the differences in the perform-
ances of mirrortree and tol-mirrortree are statistically
significant or due to chance we performed a sign
test50 for each pair of methods based on the number
of cases where one of the methods outperforms the
other. To determine whether one method outper-
forms the other for each protein in turn, we
calculated the average rank of the positive cases
on the list sorted by score (see above) and we
consider the wining method for this protein the one
with highest average rank (positive cases closer to
the top of the list). Since we are comparing, for a
given protein, two lists with the same number of
elements and the same number of positives, the
average rank becomes a good figure for determin-
ing whether one method is better than the other for
this protein. Table 1B shows the sign test P-values
for the null hypothesis (i.e. there is no real difference
between the two methods and the observed
differences are happening by chance) against the
alternative that one method is really better than the
other. Those values show that tol-mirrortree is clearly
better than the other twomethods (P(N) of the order
of 10K5–10K6). The difference between the old
mirrortree approach and the same method with
tree distances is not statistically supported (P(N)
w10K1).
Interaction-based function prediction

Predicted interaction partners can be used to
assign function to hypothetical proteins. The
concept behind this is that interacting proteins
would have a similar function or would be involved
in the same cellular process. This approach has been
demonstrated to be able to assign function with
accuracies ranging from 70% to almost 90%.51,52

These works describe very sophisticated algorithms
for inferring functions from interactions. Here, we
used a simple implementation (see Materials and
Methods).

Table 2 shows some results obtained for the blind
test with hypothetical proteins described in
Materials and Methods. In this case, gene ontology
(GO)53 terms shared between three or more of the
top four predicted interactors of a given protein are
assigned to it. Some GO terms are highly unspecific
and do not provide interesting information about
the protein (like GO:0016020, “membrane”). But for
some other hypothetical proteins, the associated GO
terms provide a clear picture of their possible
cellular roles, like Q46920. This can be done by
looking for shared GO terms in different fractions of
top hits (see Table SI in Supplementary Data). We
assessed some of the blind predictions presented in
Table 2 by looking for functional suggestions about
the proteins in public databases and resources. For
four of the five cases with predicted specific
functional features, the clues found in other
resources would agree with these predictions. The
results are given in Supplementary Data
(Table SIV).



Figure 2. Global ROC curves for mirrortree and tol-mirrortree. The curves are constructed using the whole list of pairs
(19,991). (a) The whole list of pairs is sorted according to the score of the methods (correlation coefficient). This coefficient
is indicated for some points in the curves. (b) Curves based on z-scores, instead of raw correlation values. “Sensitivity”
and “1-Specificity” can also be interpreted as true-positive and false-positive rates, respectively. TP, true positives; FN,
false negatives; TN, true negatives; FP, false positives.
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Table 2. Predicted functions for hypothetical proteins based on their predicted interaction partners

Protein Four top predicted interactors Shared GO terms (OZ3)

P45395 P52648 P25888 P31219 P13030 GO:0005524 ATP binding
P37596 P07813 P04805 P00954 P06710 GO:0005524 ATP binding
Q46920 P76182 P77611 P76181 P13652 GO:0009399 nitrogen fixation

GO:0006118 electron transport
Q46827 P32703 P31060 P77265 P09980 GO:0005524 ATP binding
P77645 P76181 P77179 P75706 P05852 GO:0016020 membrane
P77481 P77265 P07671 P07025 P77415 GO:0005524 ATP binding
P77481 P77265 P07671 P07025 P77415 GO:0003677 DNA binding
P76258 P15044 P37631 P52648 P09833 GO:0005524 ATP binding
P75959 P43672 P45465 P37345 P17888 GO:0005524 ATP binding
P45528 P77179 P04983 Q46821 P39099 GO:0016020 membrane
P39874 P00373 P37053 P76270 P77334 GO:0005554 molecular_function unknown
P39290 P76181 P76182 P27248 P00837 GO:0016020 membrane
P37596 P07813 P04805 P00954 P06710 GO:0006418 tRNA aminoacylation for protein translation

GO:0004812 tRNA ligase activity
P37027 P21499 P17580 P08576 P33398 GO:0003676 nucleic acid binding
P36880 P30870 P27300 P20082 P36879 GO:0005524 ATP binding
P31805 P77475 P31060 P00804 P23886 GO:0016020 membrane
P28634 P11880 P07862 P25539 P22188 GO:0005737 cytoplasm
P22186 P39341 P23859 P23858 P23860 GO:0016020 membrane

GO:0006810 transport
P09997 P06609 P02918 P77173 P75958 GO:0016020 membrane

E. coli hypothetical proteins for which three or more of the top four predicted interaction partners share some GO term. Proteins are
labelled with their SwissProt accession numbers. The top four predicted interactors are indicated. The predicted interactors sharing that
these term(s) are marked in bold type. The shared GO term(s) and their descriptions are also shown.
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Detection of horizontal transfer and implications
for interaction prediction

We illustrate the ability of the method to detect
HGTevents using the prototypical and well-studied
case of the aminoacyl-tRNA synthetases and
ribosomal proteins. Both protein sets are involved
in the translation machinery and perform essential
and universal functions in bacteria. However, while
ribosomal protein phylogenies are usually consist-
ent with the accepted overall phylogeny of species,
tRNA synthetases typically violate the accepted
taxonomic structure.54–56 Distances extracted from
the protein trees of the 24 E. coli tRNA synthetases
and the 56 ribosomal proteins were plotted against
the distances extracted from the 16 S rRNA tree. The
analysis of those plots reveals that a number of
tRNA synthetases probably underwent horizontal
transfer whereas most ribosomal genes were
vertically inherited. For example, the prolyl-tRNA
synthetase (P16659) distance plot shows a clear
HGTsignature (Figure 3(a)), reflected in a low linear
correlation coefficient (0.53). This HGT event is
supported by independent observations.56 The
upper cloud of dots in the plot, caused by five
species only, indicates a transfer from “outside” the
sample of bacteria used in this work. A BLAST
search57 confirms that the prolyl-tRNA synthetases
in these five organisms are more similar to the
corresponding eukaryotic and archaeal tRNA
synthetases (E-values of the order of 10K100)
than to those of the bacteria used in this work
(w10K10). On the other hand, ribosomal proteins
show a higher correlation with the expected
phylogenetic distances (for example, ribosomal
protein L36, P21194, Figure 3(b), rZ0.72) and
comparatively a lower mutational rate (compare
y-axis in Figure 3(a) and (b)).

Detection of HGT cases before evolution-based
interaction prediction is important, since these
proteins are expected to produce bad results in
these methods (see Introduction). Indeed, the level
of false positives in the protein interaction dataset
(previous section) increases from 15% to 25% for the
12 proteins whose correlation with the 16 S rRNA is
lower than 0.5 (possible HGTcases in the context of
this method), whereas this figure decreases to 13.7%
for the remaining 106 proteins (possible non-HGT
cases).

Co-occurred HGT events can point to pairs of
related proteins involved in “transferable” or
modular functions. It is known that functionally
related groups of genes (like operons) are prone to
be transferred together.47 We tried to detect those
cases by looking for pairs of proteins with high
correlation between their tree topologies and, at the
same time, low correlation with the canonical tree
(see Materials and Methods). The 40 pairs with
highest scores were selected for further analysis (see
Table SII in Supplementary Data). The presence in
some cases of the same protein in more than one
pair allowed us to group the pairs into 14 related
clusters (see Table SIII in Supplementary Data).
Some of the proteins are annotated as hypothetical,
and for some cases the function characterization is
not clear. A total of 20 of the 40 selected HGT pairs
present, at least, one membrane transport protein
involved, amongst other functions, in sugar and ion
fluxes, or in bacterial drug resistance. One interest-
ing case is the large cluster where the principal hub
corresponds to the chaperone hscA. Although the
function of this chaperone is unknown, it has been



Figure 3. Comparing the distances extracted from the
protein trees with the distances extracted from the 16 S
rRNA tree to detect HGT. Plots are shown for prolyl-
tRNA synthetase (SwissProt acc. no. P16659) and
ribosomal protein L36 (P21194). In the first case there is
a clear indication of HGT that had already been reported
by other authors.56
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suggested that it could be involved in the assembly
of proteins containing iron-sulphur centers (Fe/S).58

In this cluster hscA is related to seven different
protein partners all involved in translation (ribo-
somal proteins, tRNA synthetases, etc.). These results
could yield new suggestions about a possible
functional role of the chaperone hscA in translation.
For someof these clusters, theirmembers are adjacent
or close in the genome of E. coli (see Figure S1 in
Supplementary Data), which would support the
relationship between those co-occurred HGTevents
and “selfish operons”47).
Discussion

Here, we propose a new method for the
prediction of protein interactions based on the
detection of similar evolutionary histories. This
method incorporates information on the canonical
speciation tree (the one based on the 16 S rRNA
sequences) to correct by the background similarity
expected between any two proteins due to the
underlying speciation events, allowing also to
concomitant detection of non-standard evolution-
ary events.
Even with the simple correction introduced

(subtracting phylogenetic distances), the results of
this new version on predicting interactions are
significantly better than the previous method, as
statistically demonstrated using as test set the
largest repository of E. coli annotated interactions
available. Using distances extracted from the
phylogenetic trees (substitutions/site) instead of
percentages of sequence identity extracted directly
from the multiple sequence alignments also con-
tributes to the improvement, although to a lesser
extent.
In the test set used, we can be confident about the

positives (annotated interactions) but not about
the negatives (the remaining pairs), since many of
them can be real interactions not yet discovered or
annotated. Thus, possibly the accuracy figure
obtained is a lower limit of the true value. Another
consequence of working with this dataset is that we
could only evaluate proteins for which we have at
least one interactor. Hence, the accuracy figures
reported here are applicable to only those cases. In
other words, we have to know a priori that a given
protein is interacting with anything before applying
this method expecting the reported accuracy values.
Estimations for the yeast proteome suggest that this
is the case for almost all proteins (to be involved in
one or more interactions).59

One advantage of this method with respect to
other approaches for predicting protein inter-
actions, is that it does not require fully sequenced
genomes to work, as other evolution-based
approaches do (e.g. phylogenetic profiles22).
The incorporation of information on the standard

tree of life allows the automatic detection of non-
standard evolutionary events in a concomitant way
with the prediction of interactions. In detecting
HGT events, our method falls in the category of
approaches based on “phylogenetic incongruence”.
A method for detecting HGT has been recently
porposed by Farahi et al.,46 which has some
similarities to ours, since it also relies on matrices
of evolutionary distances. The main difference is
that the Farahi et al. method uses ribosomal protein
trees, instead of the more standard 16 S rRNA tree,
in order to establish a vertical inheritance model to
compare against.
Pairs of proteins predicted to have undergone

HGT and, at the same time, correlated to each other
are candidates to form part of independent
transferable functional modules or selfish oper-
ons.47,48 We detected some of these cases, including
proteins related with drug resistance. Drug resist-
ance is the prototypical case of modular transferable
independent function. This function requires a
minimum number of genes (for example, the
subunits of a membrane pump) that are indepen-
dent and do no interfere with other cellular
processes, and hence can be transferred and
“accepted” as a whole. To detect these modules is
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important not only because of the eventual practical
applications (antibiotic resistance) but because of
the theoretical implications as well (“isolated”
functional modules, highly independent on others,
and hence easier to model).

The detection of these non-canonical evolution-
ary histories, in addition to being important by
itself, is also critical when assessing interactions by
evolution-based methods, as discussed in the
Introduction. Indeed, our results are better when
discarding proteins automatically predicted to have
suffered HGT (see Results). This method is not
intended to compete with the many existing
methods specifically designed to locate HGT (see
Introduction), but to detect it in a simple and
convenient way, naturally integrated with the
interaction prediction methodology.

Finding the right interaction partner among the
15% top scores (15% false positives) could be
considered insufficient for a researcher interested
in a given protein. However, we consider that this
performance is useful for two main reasons: (i) it
implies an important reduction in the number of
pairs to test experimentally; and (ii) for certain
studies of the interactome that deal with global
properties such as topology or connectivity,8–14 a
high rate of false positives can be tolerated, since
these studies are statistical in nature and deal with
global properties not markedly affected by the
detailed description of the individual components.
Indeed, high-throughput experimental sets of
interactions have a very high degree of error17 and
they are still used for many studies.8–14 So, this
method can help, together with other compu-
tational and experimental techniques, in the in silico
reconstruction of protein interaction networks.

Another application of the predicted interaction
partners is the prediction of function for open
reading frames (ORFs) by simply transferring
function from their interactors.51,52 This is an
approach orthogonal and complementary to the
standard function transfer by sequence homology.

Another factor that could affect the similarity of
trees of interacting proteins is the difference in
evolutionary rates. A certain relation has been
found between this parameter and the number of
interactors a protein has to co-evolve with,9 being
highly connected proteins with slightly lower
evolutionary rates. We will explore the possibility
of extending the tol-mirrortree method in order to
take this factor into account.

Although very fast and convenient, “neighbour
joining” is not the state-of-the-art technique for
constructing phylogenetic trees. We plan to assess
the performance of the method using phylogenetic
trees obtained with more sophisticated techniques.
Moreover, although used by many investigators as
a very convenient and practical shortcut, which has
been shown to achieve a good performance in
predicting interactions (see Introduction), the usage
of a correlation formulation to compare distance
matrices is not very robust from the mathematical
point of view, since the values (distances) are not
independent. We plan to study more exhaustive,
albeit practical, ways to compare evolutionary
histories. This dependence also makes it impossible
to associate tabulated P-values (which would be
easier to interpret) to the correlation scores, since
these P-values are based on a null hypothesis,
which involves the independence of the data. It
would be useful to explore the possibility of
constructing background distributions, which do
take into account the intrinsic dependence of
distance matrices data (i.e. from random trees) to
extract P-values from them.

The evolutionary assumptions made by mirror-
tree-like approaches (i.e. co-evolution of interacting
proteins; see Introduction) were the basis for
generating and improving the methodologies. But
the methods and their performances do not depend
on these assumptions to be true. The fact is that
similarity of phylogenetic distances is related to
interaction. This observation can be used to derive
putative interactions, irrespective of the underlying
evolutionary assumptions. Nevertheless, the value
of working with these assumptions is that they can
lead to future improvements and produce scientific
knowledge beyond just a black-box predictive tool.

The method presented here allows the user to
study and compare evolutionary histories in an
integrated framework, for predicting protein inter-
actions, non-standard evolutionary histories and
protein function. Since it is fully automatic and
requires only sequence information to work, it can
be coupled to the continuous stream of new
sequences coming from the many whole-genome
sequencing projects.
Materials and Methods

A schema of the tol-mirrortree (tree-of-life-mirrortree)
method is shown in Figure 4. In summary, phylogenetic
trees for all E. coli proteins are constructed based on
multiple sequence alignments of orthologous sequences.
The trees are then converted into distance matrices. The
standard 16 S rRNA tree is similarly converted into a
distance matrix. Comparison of these three distance
matrices gives information on the evolutionary histories
of the proteins. New matrices for the proteins are
constructed corrected by the 16 S rRNA distances. These
correcting matrices are compared to assess the possible
interaction between the two proteins.
Generation of the multiple sequence alignments,
phylogenetic trees and distance matrices

Multiple sequence alignments for all E. coli K12
proteins were generated looking for their orthologues in
43 fully sequenced prokaryotic genomes and aligning
them with ClustalW60 (default parameters). Orthologues
were detected using the standard bi-directional BLAST57

procedure with an E-value cut-off of 10K5. That is, a given
E. coli protein is BLASTed against the sequences in
another genome, and the top hit is taken as the orthologue
of the original E. coli protein in that genome only if the
E-value is above the cut-off and a “reverse” BLASTof that



Figure 4. Schema of the tol-mirrortree method. Phylogenetic trees are built from the multiple sequence alignments of
the proteins. Matrices containing the distances between species are extracted from those trees. The distances between the
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protein back against E. coli also finds the original protein
as the top hit (again with an E-value above the cut-off).
Phylogenetic trees are derived from the multiple

sequence alignments using the neighbour-joining algor-
ithm implemented in ClustalW. These trees are converted
into distance matrices by summing the length of the
branches separating each pair of species. The canonical
tree of life, constructed from the 16 S rRNA sequences,
was obtained from the European rRNA Database.61 This
16 S rRNA tree is converted into a distance matrix in the
same way. New distance matrices for the proteins are
obtained by subtracting from each value the distance
between the corresponding species in the 16 S rRNA
distance matrix. Due to the different scale of protein and
RNA distances matrices, their values are rescaled before
subtraction. For this rescaling, we need an equivalence
between RNA and protein distances. That equivalence
can be obtained from “molecular clock” proteins, proteins
expected to reflect the same evolutionary history as the
“standard tree” (16 S rRNA). For that, we took the
proteins with the trees most similar to the 16 S rRNA
(highest correlations). For these proteins the relation
distance_protein/distance_RNAwas, on average, 0.42/1.
We rescaled the values of the matrices with these figures
before subtraction. The final corrected matrices are
expected to contain only the distances between ortho-
logues that are not due to speciation but to other reasons
related to function.

Prediction of interacting pairs

An interaction score is obtained by calculating the linear
correlation coefficient between the two corrected matrices.
In order for thematrices to have the samedimension and to
be comparable, only the distances between species that are
in the multiple sequence alignment of both proteins are
considered. We require a minimum of ten species in
common (45 distance values) to test a pair of proteins. So,
for two proteins A and Bwith n species in common in their
multiple sequence alignment, being dAij the distance
between species i and j in the tree of protein A, dBij the
distance in the tree of protein B (both rescaled as explained
before), and dRij the distance between species i and j in the
standard 16 S rRNA tree; the interaction score between A
and B (rAB) is calculated as:
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Where dA0
ij and dB0

ij are the values of the corrected
matrices, that is dA0

ijZdAijKdRij; dB0
ijZdBijKdRij; and

dA
0
, dB

0
are the average values of those matrices. High

values of that score reflect similar evolutionary histories
not due to the overall speciation and hence are expected
to be related to physical interaction or functional
relationship. Hence, the two differences between tol-
mirrortree and the old mirrortree method are: (i) the use of
distances extracted from phylogenetic trees instead of
same species are also extracted from the canonical tree of life,
the protein trees (distance matrices) with the 16 S rRNA tree gi
horizontal gene transfers (HGT). The distances in the protein
new corrected distances matrices are compared using a lin
between the two proteins.
sequence similarities; and (ii) the correction by the 16 S
rRNA distances.
Protein interactions test set

We tested this method for predicting protein inter-
actions in the whole set of E. coli interacting proteins
annotated in the DIP database49 (version of February
2004). This database contains interactions manually
extracted from the literature and, except for organisms
for which more specialised databases exist, it can be
considered the current gold standard for protein inter-
actions. There were 516 pairs of interacting pairs,
comprising 512 different E. coli proteins. This test set
contains only physically interacting proteins, not func-
tionally related ones. In order to get a set of negative
examples involving the same proteins, we generated all
possible pairs between those proteins. This set of negative
examples may actually erroneously include positive
examples, since the fact a pair of proteins is not annotated
in DIP does not guarantee that these two proteins do not
interact. In other words, we can be sure of the positives
but not of the negatives. Due to the limitation of requiring
ten or more species in common in order for two proteins
to be tested, our final test set contained 19,991 pairs, 115 of
them being true interactions. There were 118 proteins for
which at least one pair comprising a real interactor could
be calculated. From these 118 cases, 80 (68%) have only
one annotated interactor in the list, 20 (17%) have two,
and the remaining 18 (15%) have three or more.
We acknowledge that this dataset is limited, since there

is no experimental high-throughput protein interaction
data for E. coli. This incompleteness creates some
problems in evaluating the results (especially false
positives) discussed elsewhere in the article. To use
other organisms with a far larger coverage of experimen-
tal protein interaction data (such as yeast) would over-
come these problems. There are two main reasons to
restrict to prokarya and not use the available eukaryotic
interaction datasets: (i) some characteristics of eukaryotic
proteins (including multidomain and low-complexity
regions) make the automatic generations of reliable
multiple sequence alignments more difficult than for
prokarya; (ii) while the phylogenetic tree for bacteria is
more or less well established, the one involving eukarya is
not so clear (especially the separation between the three
kingdoms). Since the tree of life is an input for this
method, we wanted to restrict to a well-established one.
Moreover, concepts like operon or genome closeness used
in this study make sense only for prokaryotic organisms.
Additionally, for E. coliwe can produce blind predictions,
which could be useful for further investigation, since not
all the interactions are known. For these reasons, we
decided to use E. coli as a simpler model organism in spite
of the relatively limited protein interaction data.
Interaction-based prediction of function

As a blind prediction, we ran all-against-all E. coli
proteins. Due to the limitations described, we could make
the one based on the 16 S rRNA sequences. Comparison of
ves information on non-standard evolutionary events, like
matrices are corrected by those in the 16 S rRNA. These

ear correlation criteria to assess the possible interaction
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calculations for 836,934 pairs. For the proteins annotated
as “hypothetical”, we took the top list of predicted
interaction partners, extracted their functional annota-
tions from the GO database53 and assigned to the
hypothetical protein those GO terms shared by its
predicted interactors.
Detection of non-standard evolutionary events

Non-standard evolutionary events are detected by
comparing the trees (distance matrices) of the two
proteins, between them and with the 16 S rRNA tree.
For this purpose we use the original distance matrices
(before rescaling and correcting) (see Figure 4).
Proteins predicted to have undergone HGT events are

those whose trees are different from the 16 S rRNA tree
(poorly correlated, low rAR). Modular cassettes of
functionally related proteins are composed of proteins
with a high degree of similarity between their trees but a
low degree of similarity with the 16 S rRNA tree, thus
indicating a possible joint HGT due to functional reasons.
To quantify this we calculated, for all possible pairs in
E. coli the difference between the correlation of the trees of
the two proteins and the average correlation of these
proteins with the 16 S rRNA tree (rABK(rARCrBR)/2). In
this case correlation values (r) are calculated from the
original matrices, before correcting with the 16 S rRNA
distances (Figure 4).
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