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Deciphering the network of protein interactions that under-
lines cellular operations has become one of the main tasks
of proteomics and computational biology. Recently, a set
of bioinformatics approaches has emerged for the predic-
tion of possible interactions by combining sequence and
genomic information. Even though the initial results are
very promising, the current methods are still far from
perfect. We propose here a new way of discovering possible
protein–protein interactions based on the comparison of
the evolutionary distances between the sequences of the
associated protein families, an idea based on previous
observations of correspondence between the phylogenetic
trees of associated proteins in systems such as ligands and
receptors. Here, we extend the approach to different test
sets, including the statistical evaluation of their capacity to
predict protein interactions. To demonstrate the possibilities
of the system to perform large-scale predictions of inter-
actions, we present the application to a collection of more
than 67 000 pairs of E.coli proteins, of which 2742 are
predicted to correspond to interacting proteins.
Keywords: bioinformatics/co-evolution/phylogenetic tree/protein
interaction/proteomics

Introduction

The reconstruction of the network of protein–protein inter-
actions is essential for the study of the dynamic properties of
cellular systems. Such an interaction network would include
key systems such as metabolic pathways, signaling cascades
and transcription control networks. New and powerful experi-
mental techniques, such as the Yeast Two-Hybrid System, are
already tackling this problem systematically (Mendelsohn and
Brent, 1999). Indeed, the first genome-scale results are already
available: between 183 and 280 experimentally determined
interactions in yeast (Ito et al., 2000; Uetz et al., 2000) and
261 in Helicobacter pylori (Rain et al., 2001).

In parallel with these developments, a number of computa-
tional techniques have been designed for predicting protein
interactions from the information contained in sequences and
genomes (Dandekar et al., 1998; Enright et al., 1999; Marcotte
et al., 1999a,b; Pellegrini et al., 1999). These computational
techniques still have a limited range of applicability; for
example, Enright et al. predicted a total of 64 interactions in
three bacterial genomes (Enright et al., 1999). The accuracy
and coverage of these techniques were recently compared
(Huynen et al., 2000) (see Discussion).

It has been observed previously that phylogenetic trees of
ligands and receptors, e.g. insulin and insulin receptors (Fryxell,
1996), were more similar to what could be expected from a
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general divergence between the corresponding species under
the standard molecular clock hypothesis (Zuckerkandl, 1987).
The similarity between the phylogenetic trees of interacting
proteins was interpreted as an indication of their coordinated
evolution and a direct consequence of the similar evolutionary
pressure applied to all the members of a given cellular complex.

An extreme of co-evolution of two interacting proteins
would be those cases in which both proteins are simultaneously
lost in the same species, probably because one of them cannot
perform its function without the other. One such example
could be His5 (His synthesis) and TrpC (Trp synthesis). This
observation is the base of the ‘phylogenetic profiles’ method
(Pellegrini et al., 1999).

In this work, we went one step beyond the binary information
(presence/absence of the genes in different species) using the
information contained in the full structure of the phylogenetic
tree. We measured the similarity between trees as the correlation
between the distance matrices used to build the trees, with a
methodology similar to that recently published by Goh et al.
(Goh et al., 2000). In that work, they assessed the similarity of
the trees in two examples, the two domains of phosphoglycerate
kinase (PGK) and the chemokine–receptor system, quantifying
the degree of symmetry between the corresponding trees. Here
we extend the idea to a search for interaction partners in a
large collection of possibilities. The results indicate that it is
indeed possible to distinguish statistically a few true inter-
actions among many possible alternatives, opening up the
possibility of searching for interaction partners in large collec-
tions of proteins and complete genomes.

Materials and methods

Data sets

Structural domains. The first data set was composed of 13
proteins of known structure for which two structural domains
in close interaction are clearly visible (Pazos et al., 1997).
These proteins were used to produce a collection of domains.
The multiple sequence alignments were taken from the HSSP
database (Sander and Schneider, 1993), March 2000 version.
The calculation of the similarity of phylogenetic trees was
carried out for those pairs of domains with at least 11 sequences
from the same species (see below). The final set contained
133 pairs of domains including 13 pairs of truly interacting
domains, that is, pairs in which the two domains belong to
the same original protein of known structure.

Proteins. A second set was build with 53 Escherichia coli
proteins extracted from a set previously analyzed by Dandekar
et al. (Dandekar et al., 1998). The multiple sequence alignments
for those proteins were made searching with BLAST (Altschul
et al., 1990) using a cut-off value of P(N) � 1�10–5 and
aligning with ClustalW (Higgins et al., 1992) the homolog-
ous sequences in 14 fully sequenced microbial genomes
(M.tuberculosis, Rhizobium sp., E.coli, H.pylori, Synechocystis
sp., M.thermoautotrophicum, A.aeolicus, B.burgdorferi,
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Fig. 1. Scheme of the mirror tree method. The initial multiple sequence
alignments of the two proteins are reduced, leaving only sequences of the
same species and consequently the trees constructed from these reduced
alignments would have the same number of leaves and the same species in
the leaves. From the reduced alignments, the matrices containing the
average homology for every possible pair of proteins are constructed. Such
matrices contain the structure of the phylogenetic tree. Finally, the similarity
between the data sets of the two matrices and implicitly the similarity
between the two trees are evaluated with a linear correlation coefficient.

P.horikoshii, T.pallidum, B.subtilis, M.jannaschii, H.influenzae,
A.fulgidus). As in the previous case, only pairs of proteins for
which it was possible to collect more than 11 sequences from
the same species were analyzed, leading to a final number of
244 pairs, that included eight pairs of known interactions and
eight pairs of possible interactions (see below).

Genomes. A whole genome experiment was performed by
collecting alignments for 4300 E.coli proteins and combining
them in 67 209 pairs of matrices for the analysis. The align-
ments were collected as in the set above, from 14 complete
genomes by searching with BLAST and aligning the homolog-
ous sequences with ClustalW. The results of the searches are
available at http://www.pdg.cnb.uam.es/mirrortree.

Methodology
For each pair of proteins, the two initial multiple sequence
alignments were refined by selecting the sequences that corre-
spond to common species, producing two trees with the same
number of leaves (Figure 1). In the cases in which one species
contained more than one homologous sequences of a given
protein (paralogous sequences), only one of them was selected.
We used a simple criterion for the selection, choosing the
sequence more similar to the E.coli protein or to the HSSP
master sequence in the cases of the E.coli and structural
domains test sets.

We imposed an additional restriction on the minimum size
of the protein families by selecting only those cases in which
it was possible to collect at least 11 sequences from the same
species for both proteins. For example, the pair of proteins A
and B is analyzed only if it is possible to find 11 or more
species containing both proteins (proteins A and B of E.coli,
A and B of H.pylori, etc.). This minimum limit was set
empirically as a compromise between being sufficiently small
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to provide enough cases and large enough for the matrices to
contain sufficient information.

The multiple sequence alignments were used for building
matrices containing the distances between all possible protein
pairs. Distances were calculated as the average value of the
residue similarities taken from the McLachlan amino acid
homology matrix (McLachlan, 1971) (Figure 1). Finally, the
linear correlation coefficient (r) between the data of these two
matrices was calculated according to the standard equation
(Press et al., 1992):

Σ
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where n is the number of elements of the matrices, that is,
n � (N2 – N)/2, N is the number of sequences in the multiple
sequence alignments (Figure 1), Ri are the elements of the first
matrix (the distances among all the proteins in the first multiple
sequence alignment), Si is the corresponding value for the
second matrix and R̄ and S̄ are the means of Ri and Si,
respectively.

It is important to note that the method does not require the
construction of the phylogenetic trees and only the underlying
distance matrices are analyzed, which makes this approach
independent of any given tree-construction method.

Results
Interactions between structural domains
Table I contains the full list of correlation values for the 133
pairs of domains analyzed. The positions of the 13 real
interactions are highlighted. It can be seen that most of them
correspond to high correlation values (nine out of 13 have
correlation values better than 0.77).

The representation of these data in Figure 2 shows how the
true positives separate well from the bulk of negatives and
how correlation values are good indicators of interaction. In
this test most of the false positives are produced by two of
the proteins: metallothionein (PDB code 4mt2) and cytochrome
c (2c2c). The wrong predictions produced by the metallo-
thionein could be related to its sequence composition, rich in
Cys, since composition bias influences very negatively the
quality of multiple sequence alignments (Wootton and
Federhen, 1996). We do not have a clear a posteriori interpreta-
tion for the ubiquitous presence of cytochrome c interactions.

There are also a few false negatives, including the two
domains of a β-lactamase (PDB code 3blm) and adenylate
kinase (3adk), that present low correlation values (0.60 and
0.55, respectively), which makes them undetectable by this
method.

This experiment with the structural domains could be
considered an ‘easy’ test, since the interaction partners are
domains of the same protein and therefore likely to be subject
to stronger evolutionary pressure and co-adaptation. However,
it is still an interesting test since it provides an upper threshold
for the correlation value of true interactions. The average value
of the true interactions (Table I) is 0.78, very similar to the
value obtained by Goh et al. in the two-domain protein assessed
by them (Goh et al., 2000) (i.e. r � 0.79 for the two domains
of PGK).
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Table I. Results of the structural domains test set

Pair r Pair r Pair r

2c2c_2–4mt2_2 0.959 3trx_1–3pgk_2 0.577 3trx_2–2c2c_1 0.281
9pap_1–9pap_2 0.907 4tnc_1–4mt2_1 0.556 1sgt_1–2c2c_2 0.270
3pgk_1–3pgk_2 0.901 3adk_1–3pgk_1 0.554 1alc_1–4mt2_2 0.268
2c2c_1–4mt2_2 0.901 3adk_1–3dfr_2 0.554 1sgt_1–2c2c_1 0.268
4mt2_1–4mt2_2 0.898 3adk_1–3adk_2 0.552 2c2c_1–1rnd_1 0.263
3trx_1–3trx_2 0.894 2c2c_1–9pap_2 0.549 2c2c_2–3adk_2 0.254
4tms_1–4tms_2 0.854 3trx_2–3pgk_2 0.544 9pap_1–3adk_2 0.254
2c2c_2–4mt2_1 0.849 3adk_1–3pgk_2 0.539 3adk_2–3pgk_1 0.251
1rnd_1–1rnd_2 0.817 1rnd_1–4mt2_1 0.513 1sgt_1–1rnd_1 0.238
2c2c_1–4mt2_1 0.813 3trx_2–3pgk_1 0.499 3adk_2–3pgk_2 0.238
1alc_1–1alc_2 0.801 2c2c_2–9pap_2 0.486 9pap_2–3adk_2 0.221
4tnc_1–4tnc_2 0.794 3adk_2–4tnc_2 0.486 1sgt_2–1alc_2 0.219
2c2c_1–2c2c_2 0.773 3trx_1–3adk_1 0.479 2c2c_2–1alc_1 0.203
3pgk_1–4tms_1 0.756 3trx_2–3adk_1 0.469 9pap_1–4tnc_1 0.202
3pgk_1–4tms_2 0.731 3adk_1–4tnc_1 0.466 1sgt_2–1rnd_1 0.191
2c2c_1–3adk_1 0.726 3adk_2–4tnc_1 0.465 1sgt_1–1alc_2 0.178
3pgk_2–4tms_1 0.723 1alc_1–4mt2_1 0.462 3trx_2–3adk_2 0.175
2c2c_2–3pgk_1 0.715 9pap_2–3adk_1 0.459 1sgt_1–1rnd_2 0.168
1alc_1–1rnd_1 0.712 9pap_1–3adk_1 0.455 2pf2_2–1alc_1 0.160
2c2c_2–3pgk_2 0.698 4tnc_2–4mt2_1 0.453 2c2c_1–1alc_1 0.155
1alc_2–1rnd_1 0.697 1sgt_2–4mt2_2 0.452 9pap_1–4tnc_2 0.149
1sgt_1–1sgt_2 0.693 4tnc_1–4mt2_2 0.448 2c2c_2–1rnd_2 0.146
3pgk_2–4tms_2 0.691 1alc_2–4mt2_2 0.446 4tms_2–3dfr_1 0.130
3adk_2–3dfr_2 0.675 9pap_2–4tnc_1 0.446 3trx_1–3adk_2 0.128
1sgt_2–2pf2_2 0.673 1sgt_2–4mt2_1 0.433 2c2c_2–1rnd_1 0.125
3dfr_1–3dfr_2 0.672 3adk_1–4tnc_2 0.421 2c2c_1–1rnd_2 0.113
2c2c_2–9pap_1 0.658 4tnc_2–4mt2_2 0.405 1sgt_2–1rnd_2 0.073
2c2c_1–3pgk_1 0.648 1rnd_1–4mt2_2 0.405 2c2c_2–4tnc_2 0.050
3trx_2–9pap_1 0.646 2c2c_1–3adk_2 0.401 3trx_1–4tnc_1 0.033
1sgt_1–2pf2_2 0.646 1sgt_2–2c2c_1 0.399 2pf2_2–1alc_2 0.028
2c2c_2–3adk_1 0.631 4tms_2–3dfr_2 0.394 3trx_2–4tnc_1 0.024
3trx_1–9pap_1 0.627 3adk_1–3dfr_1 0.390 4tms_1–4tnc_2 0.024
2c2c_2–1alc_2 0.626 1sgt_2–2c2c_2 0.381 2c2c_1–4tnc_1 0.021
3trx_2–9pap_2 0.620 3adk_2–3dfr_1 0.372 2c2c_2–4tnc_1 0.008
2c2c_1–3pgk_2 0.620 1sgt_2–1alc_1 0.371 2c2c_1–4tnc_2 –0.008
1rnd_2–4mt2_1 0.619 4tms_1–3dfr_2 0.358 4tms_1–4tnc_1 –0.014
1alc_2–1rnd_2 0.607 1sgt_1–4mt2_1 0.343 3trx_1–4tnc_2 –0.067
1rnd_2–4mt2_2 0.606 1sgt_1–4mt2_2 0.336 3trx_2–4tnc_2 –0.123
3blm_1–3blm_2 0.603 9pap_2–4tnc_2 0.331 4tms_2–4tnc_2 –0.149
1alc_1–1rnd_2 0.599 4tms_1–3dfr_1 0.327 3pgk_1–4tnc_1 –0.158
3trx_1–3pgk_1 0.595 3trx_1–2c2c_2 0.319 3pgk_1–4tnc_2 –0.169
3trx_1–9pap_2 0.589 3trx_1–2c2c_1 0.312 3pgk_2–4tnc_1 –0.178
1alc_2–4mt2_1 0.588 1sgt_1–1alc_1 0.312 3pgk_2–4tnc_2 –0.181
2c2c_1–1alc_2 0.587 3trx_2–2c2c_2 0.287 4tms_2–4tnc_1 –0.217
2c2c_1–9pap_1 0.581

The table contains the full list of pairs of domains constructed merging the domains of 13 two-domain proteins and where the multiple sequence alignments
of the two domains contain 11 or more sequences in common. The pairs of domains are named pdbid1_domain1-pdbid2_domain2. The correlation coefficient,
indicator of tree similarity, is shown for every pair. The table is sorted by that value. ‘True interactions’ corresponding to the two structural domains of the
same protein are highlighted in underlined bold italic type.

Interactions between proteins
The second test was carried out on the 244 pairs of proteins
derived from the Dandekar et al.’s set (Dandekar et al., 1998)
(see Materials and methods). This set contains eight true
interactions between well-known proteins and a small number
of other possible interactions, e.g. different ribosomal proteins
which form part of the same macromolecular complex even
though they may not interact directly.

As in the previous test, most of these pairs of truly interacting
proteins have high correlation values (Figure 3) and there is a
clear correlation between interaction index and true interactions
with eight out of eight true interations and seven out of eight
possible interactions with correlation values better than 0.8.
The pair with the highest correlation value corresponds to the
known interaction between the α and β subunits of the
membrane ATP synthase and the first ‘false positive’ corre-
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sponds to the pair formed by the chaperonin GroEl and the
ribosomal protein S7.
Interactions in the E.coli genome
We carried out a fully automatic prediction of protein inter-
actions at the genomic scale with the aim of obtaining a
significant number of predictions. We generated alignments
for 4300 E.coli proteins which allowed the study of 67 209
possible interaction pairs. This number is still far from the
total of 9.2�106 possible pairs between E.coli proteins, of
which about 20 000 true interactions are expected if we
consider the average of interactions per protein detected in
H.pylori by Yeast Two-Hybrid screening (Rain et al., 2001).
In our case, the main limitation for building a larger data set
was the use of a relatively small set of 14 genomes for
constructing the alignments.

The analysis of the possible interactions leads to the proposal
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Fig. 2. Representation of the results for the structural domains data set. The data in Table I are plotted representing the correlation value for the 133 pairs of
domains. Pairs representing ‘true interactions’ – the two structural domains of the same protein – are marked with a filled square. Some of the pairs are
labeled with the pair name as in Table I.

Fig. 3. Representation of the results for Dandekar et al.’s data set (Dandekar et al., 1998). The correlation value for the 244 pairs is shown. True interactions
are marked with a filled square and possible ones (i.e. pairs of ribosomal proteins) with open squares. Representative pairs are labeled with the name of the
corresponding proteins.

of more than 2700 pairs of proteins that were found to have
scores better than 0.8 (Figure 4). Well-known interactions are
included among the stronger predictions, including proteins
such as ATP synthase α and β, elongation factors Tu and G,
and ribosomal proteins S2–S10 and S2–S11. Among the pairs
with interaction predictions better than 0.8, there are 460
proteins labeled as hypothetical. For example, the protein of
unknown function YHBZ_ECOLI is predicted to interact with
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the ribosomal protein S4 and YFGK_ECOLI is predicted to
interact with the polynucleotide phosphorylase PNP_ECOLI.
For these proteins these predictions are the first clue about
their possible function.

The pairs of proteins with highest similarities of phylogenetic
trees that correspond to new predictions of interaction are two
GTP-binding proteins LEPA and YCHF, the chaperone GroEl
with the ribosomal protein S15 and glutamyl tRNA synthetase
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Fig. 4. Number of predicted interactions in E.coli depending on the cut-off
value considered.

with a GMP synthetase. The validity of these predictions
would have to be confirmed experimentally.

Discussion
The prediction of protein interaction partners with bio-
informatics methods has become a topic of increasing interest
in recent years. Different methods have emerged based on the
study of conservation of gene order (Dandekar et al., 1998),
the presence/absence of pairs of proteins in full genomes
(Gaasterland and Ragan, 1998; Pellegrini et al., 1999) or the
presence of proteins assembled in multi-domain proteins in
other genomes (Enright et al., 1999; Marcotte et al., 1999).

We based the study presented here on the common previous
observation of the similarity between the trees of interacting
proteins. Examples of systems in which this relation was
previously observed are insulin and dockerin and their corres-
ponding receptors (Fryxell, 1996; Pages et al., 1997). Recently,
the relation between the corresponding phylogenetic trees
was carefully quantified for multiple sequence alignments
corresponding to the two domains of phosphoglycerate kinase
(Goh et al., 2000).

Here we present a systematic extension of these ideas about
the similarity in the evolutionary history of complementary
proteins (‘mirror trees’) by applying it to the large-scale
detection of interacting protein partners. The results obtained
in different systems demonstrate that the similarity between
phylogenetic trees can be used as a predictor of protein
interaction, with �66% of true positives detected at correlation
values better than 0.8. This value of 0.8 seems to be a
good empirical cut-off to discriminate between true and false
interactions (Figures 2 and 3) in accordance with Goh et al.
(Goh et al., 2000). This cut-off is probably a stringent one,
since it has been derived from domains of the same protein
that are likely to be in permanent (not transient) interaction.
It is possible that for free independent proteins the pressure
for interaction would be smaller, the signals left by their
interaction in the corresponding trees probably weaker and
correspondingly the correlation values smaller.

One of the more interesting properties of the current approach
is its capacity to cover a significant number the potential
interactions. For example, in the set of proteins derived from
the study of Dandekar et al. (Dandekar et al., 1998), it was
possible to study the interaction of 244 pairs, accounting for
18% of the total number of 1378 possible pairs. In the genome-
based experiment the number of possible interactions explored

613

was as large as 67 209, a substantial number even if it is still
a small fraction of the possible 9.2�106 pairs. In this case the
number of predictions of interaction was of 2742, which is
clearly higher than the 64 interactions predicted from the
information about domain arrangements by Enright et al. for
three genomes (Enright et al., 1999) or the 749 predicted by
Marcotte et al. for E.coli (Marcotte et al., 1999). The coverage
of these techniques was compared using the genome of
M.genitaliun for benchmarking (Huynen et al., 2000) and it
ranges from 6% for the techniques based on gene fusion events
to 37% for those based on the conservation of gene order. A
separate issue is how accurate these predictions would be.

Despite the promising results obtained in the different tests
carried out, a number of problems are still present in the
current approach. First, the number of possible interactions
could have been increased by collecting sequences from a
larger number of genomes or by improving the process of
selection of the corresponding sequences from the same species
in the corresponding pairs of protein families. It is to be
expected that the continuous stream of new sequences and
genomes would alleviate this problem, allowing us to increase
the number of predictions easily. Second, the quality of the
underlying alignments is a key factor and a number of false
positives are introduced in the case such as the Cys-rich protein
discussed in Results. Third, it is possible that some inaccuracies
are introduced by comparing distance matrices instead of the
real phylogenetic trees, since the distance matrices are not a
perfect representation of the corresponding phylogenetic trees.
Given that the comparison of phylogenetic trees is a difficult
and not fully solved problem, we decided to short-cut the
problem by comparing their underlying distance matrices.
Finally, it is really difficult to assess definitively the accuracy
of any of the protein interaction prediction methods in the
absence of a well-accepted and large enough collection of
annotated protein interactions.

Among the positive features of the mirror tree approach, it
is interesting to mention that it does not require the presence
of fully sequenced genomes, as other methods do, e.g. the
‘phylogenetic profiles’ method (Pellegrini et al., 1999), since
the mirror tree approach is based only on information about
protein families whether they are coming from complete
genomes or not.

This approach and the others commented upon here have
different ranges of reliability and applicability. A prospect for
the future is to combine them to obtain an in silico prediction
of the interaction network of an organism.
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