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ABSTRACT

Motivation: Current projects for the massive characterization of

proteomes are generating protein sequences and structures with

unknown function. Thedifficulty of experimentally determining function-

ally important sites calls for thedevelopment of computationalmethods.

The first techniques, based on the search for fully conserved positions

in multiple sequence alignments (MSAs), were followed by methods

for locating family-dependent conserved positions. These rely on the

functional classification implicit in the alignment for locating these

positions related with functional specificity. The next obvious step,

still scarcely explored, is to detect these positions using a functional

classification different from the one implicit in the sequence relation-

ships between the proteins. Here, we present two new methods for

locating functional positionswhich can incorporate an arbitrary external

functional classification which may or may not coincide with the one

implicit in the MSA. The Xdet method is able to use a functional clas-

sification with an associated hierarchy or similarity between functions

to locate positions related to that classification. The MCdet method

uses multivariate statistical analysis to locate positions responsible

for each one of the functions within a multifunctional family.

Results: We applied the methods to different cases, illustrating scen-

arios where there is a disagreement between the functional and the

phylogenetic relationships, and demonstrated their usefulness for the

phylogeny-independent prediction of functional positions.

Availability:All computer programs and datasets used in this work are

available from the authors for academic use.

Contact: pazos@cnb.uam.es

Supplementary information: Supplementary data are available at

http://pdg.cnb.uam.es/pazos/Xdet_MCdet_Add/

INTRODUCTION

If the genomic era was characterized by the massive sequencing of

complete genomes, the so-called ‘post-genomic’ era is being, may

be, characterized by an unexpected lack of tools for obtaining rel-

evant information from these raw sequences. Today, we know the

complete sequences of hundreds of genomes from the three king-

doms, and ‘environmental sequencing’ (Venter et al., 2004) (the

organism-independent sequencing of DNA repertories directly

extracted from environmental samples) is boosting the number of

available sequences. There is also an increasing number of proteins

of known three-dimensional (3D) structures without associated

functional information, in part owing to the Structural Genomics

projects (Brenner, 2001).

Determining which residues in a protein are responsible for its

function is very important in order to understand its molecular

mechanism, to modify this function in our benefit (biotechnology)

or to correct problems related with this function (e.g. pathologies).

The experimental characterization of function and functional

features (functional sites, etc.) is very expensive, time consuming

and difficult to automate. This justifies the development of compu-

tational methods for predicting functional sites and other functional

features for these uncharacterized sequences.

Some methods use previously known functional sites to derive

sequence profiles (Mulder et al., 2003) or structural templates

(Di Gennaro et al., 2001; Porter et al., 2004) in order to match

new sequences/structures against them. Other techniques are able to

detect functional sites without previous knowledge of them. Some

of these methods are able to predict functional sites based on single

sequences, like the method developed by Ofran and Rost for pre-

dicting protein interaction sites (Ofran and Rost, 2003). Others are

based on single 3D structures. They look for structural features

frequently associated with active sites and binding sites, like low-

stability regions (Elcock, 2001) or special connectivity patterns

extracted from residue–residue contact networks (Del Sol and

O’Meara, 2004). Nevertheless, most of the methods predict func-

tional positions based on multiple sequence or structure alignments

of related proteins, and they work under the common assumption

of conservation of functional residues during evolution.

The advantage of structural alignments is that they can relate

remote homologs (Pazos and Sternberg, 2004), and their drawback

is that they need 3D structures to work, which are more scarce than

sequences.

Since sequences are still more abundant than structures, there is a

plethora of methods for predicting functional sites from sequence

alignments. The first information extracted from sequence align-

ments was related with fully conserved positions (Zuckerkandl and

Pauling, 1965). Fully conserved positions are related with sites

important for the function or the structure of the protein. Later,

the concept of conservation was extended to family-dependent con-

servation: positions that are conserved within subfamilies being the

aminoacid type different between different subfamilies. These�To whom correspondence should be addressed.
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family-dependent conserved positions have been related with func-

tional specificity. That is, they are associated with the functional

feature which distinguishes the functional subfamilies within the

alignment, in contrast to fully conserved positions which are

associated to the function which is common to all the proteins in

the alignment. There are different approaches for detecting these

positions: based on Principal Component Analysis (PCA) and

neural network classifiers (Andrade et al., 1997; Casari et al.,
1995), explicit phylogenetic trees (del Sol Mesa et al., 2003;

Lichtarge et al., 1996), the detection of positions correlated with

the phylogeny (del Sol Mesa et al., 2003; La et al., 2005) and others

(Bickel et al., 2002; Livingstone and Barton, 1993). Conservation

and family-dependent conservation are sometimes combined with

structure information to restrict the predictions to the positions with

the structural characteristics expected for a functional site (Aloy

et al., 2001; Armon et al., 2001; Glaser et al., 2006; Kinoshita and

Ota, 2005; Landgraf et al., 2001; Yu et al., 2005).

These methods for locating family-dependent conserved posi-

tions do not take a functional classification as input but they use

the one implicit in the alignment. Hence, their assumption is that the

functional classification of the proteins coincide with the sequence-

based classification represented by the alignment. According to the

accepted scenario of divergent evolution to function, this should be

the situation in most of the cases. Nevertheless, one can imagine

certain specific situations where there is a disagreement between the

alignment-based classification and the functional classification of

the proteins. Many functional and structural requirements ‘push’

together the evolution of a protein family, but only one phylogeny

can be observed, which arises from a combination of all the different

functional constraints. Hence, the specific divergence owing to a

function we are interested in can be masked within this composite

phylogeny. Another situation which could result in a function/

phylogeny disagreement is when the alignment does not reflect

the true phylogeny, e.g. in structural alignments linking distant

proteins for which much of the sequence information relating the

proteins has been lost (i.e. SH3 domains). There are not many

methods which can incorporate an external functional classification.

Mirny and Gelfand (2002) developed a method which uses informa-

tion on orthology/paralogy to define the functional subfamilies in

the MSA which can naturally use an external functional classifica-

tion. Hannenhalli and Russell developed a method based on the

comparison of subtype-specific sequence profiles which allows

the user to impose an external functional classification (definition

of the subtypes) (Hannenhalli and Russell, 2000). Although these

interesting works probably constitute the first approaches for the

phylogeny-independent detection of functional residues, these

methods are in many senses exploratory and still have a number

of intrinsic drawbacks. For example, they consider the functional

classes as disjoint classes and do not have the possibility of incorp-

orating relationships between them (i.e. functional distances or

functional hierarchies). Moreover, it is unclear how many of

the examples presented correspond to cases where the functional

classification does not follow the phylogeny.

In this work we present two new supervised methods for detect-

ing functional sites from multiple protein alignments which can

incorporate an external functional classification instead of using

the one implicit in the alignment. One of the methods (Xdet) can

incorporate quantitative information on ‘functional similarities’ or

hierarchical functional classifications in order to detect positions

in the alignment related with that functional organization. The

other method (MCdet) is based on a vectorial representation of

the alignment on which Multiple Correspondence Analysis

(MCA) is used to locate the residues which better follow the pattern

of presence/absence of a given function. We tested the methods in

different scenarios representing different degrees of coincidence

between the functional and the phylogenetic classifications, and

where that disagreement arises from different causes.

MATERIALS AND METHODS

Xdet method

This method is intended to locate positions in a multiple protein alignment

which are related to the functional classification of the proteins, ideally when

the functional classes can be related by a hierarchy, or distances between

them can be defined. The idea is that, in these positions, a sharp amino acid

change between two proteins would be related with a high functional

difference between these proteins, and the other way around.

A schema of the Xdet method is shown in Figure 1. For each position in the

alignment, a matrix quantifying the amino acid changes for all pairs of

proteins is constructed based on a substitution matrix. In this matrix, a

given entry represents the similarity between the residues of two proteins

at that position. An equivalent matrix is constructed from an external explicit

functional classification where each entry represents the ‘functional simil-

arity’ between the corresponding proteins (for the functional feature we are

interested in). These two matrices are compared with a Spearman rank-order

correlation coeficient (Press et al., 1992). So, for a multiple alignment of N

proteins of leght L, being Aijk the similarity between the amino acids of

proteins i and j at position k (see below), and Fij the functional similarity

between proteins i and j (see below), the score for position k is calculated as

rk ¼
P

i‚ j ðA0
ijk � �A0A0 Þ · ðF0

ij � �F0F0 ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i‚ j ðA0

ijk� �A0A0 Þ2
q

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i‚ j ðF0
ij� �F0F0 Þ2

q ‚

where A0 and F0 are the ranked values of A and F respectively [ties being

assigned midranks (Press et al., 1992)]. �A0A0 , �F0F0are the corresponding average

values of these ranked matrices. Positions with >10% gaps are excluded

from the calculations, and 0 is used as the similarity between any amino acid

and a gap.

Positions with high rk values are the ones for which similarities between

amino acids are correlated with the functional similarities between the

corresponding proteins, and hence are predicted as the ones related with

functional specificity. P-values for these scores are obtained using a back-

ground distribution of random scores generated from 1000 random protein-

function assignments using the same alignment.

As a measure of ‘functional similarity’ between proteins (F) very different

metrics can be used, depending on the problem we are dealing with and the

associated definition of ‘function’: chemical similarity between ligands,

metrics for measuring similarities in hierarchical functional classifications

like the ones implicit in Gene Ontology (Harris et al., 2004) or EC, functional

hierarchies based on expert knowledge, similarity between enzyme func-

tional parameters (Kcat, Km, . . .), and so on. In the basic case where the func-

tional classification does not have associated (quantified) functional

similarities, one can just use ‘1’ and ‘0’ for representing similarities between

proteins belonging to the same or different functional classes respectively.

We show examples of some of these different metrics of functional similarity

in this work. Similarly, we can use different metrics of similarity between

amino acids (A), either any of the available substitution matrices or the

identity matrix (0,1), depending on whether we expect the function we

are studying to be related with conservative or non-conservative changes.

MCdet method

This method is based on a simultaneous vectorial representations of

sequences, residues and functions on related spaces. This allows to study
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the relationships between these three sets using vector analysis techniques,

MCA in this case.

MCA is based on correspondence analysis (Greenacre, 1984), a multi-

variate descriptive statistical technique that can be viewed as an equivalent to

PCA when dealing with qualitative data, so that objective numerical values

can be assigned to them (Greenacre, 1984; Lebart et al., 1984).

A schema of the MCdet method is shown in Figure 2. Given a multiple

sequence alignment (MSA) of N sequences and L positions, a data matrix W

of dimension N · Q (where Q ¼ 21L) is constructed representing each

position l in the alignment as a complete disjunctive category with 21

different modalities (representing the 20 amino acid types plus the gap)

just coding the presence of a modality with ‘1’and its absence with ‘0’.

Fig. 1. Schema of the Xdet method. A sequence alignment of eight proteins is depicted. The implicit phylogeny based on the sequence relationships extracted

from the alignment is shown on the left. The colors of the proteins represent a functional classification which is not reflected in the phylogeny. In this case, this

function is the binding of an effector (small molecule) chemically slightly different for the different members of the family (right). A functional similarity can be

defined between the proteins for this particular function (i.e. the chemical similarity between the effector they bind). These similarities could be represented in a

tree-like structure or a hierarchy (rightmost tree). To asses whether a given position in the alignment is related with that particular functional hierarchy, a matrix

containing all the amino acid changes occurring at that position is constructed and compared with an equivalent matrix containing the functional similarities

between the proteins previously defined. The values of these two matrices are depicted here as circles with a radius proportional to the similarity value.

Fig. 2. Schema of the MCdet method. A MSA of four sequences (A, B, C and D) is depicted. The functions of the proteins (F1,F2 andF3) are not related with the

alignment-based phylogeny (depicted on the left). MCA is applied to a binary representation of the sequences and the functions of the proteins (matrix at the

bottom) generated as explained in Materials and Methods. This procedure leads to related spaces (defined by the eigenvectors of the MCA treatment�ui and vi�)

where the vectors of positions important for functional specificities lay close to the vectors of the functions they determine (right).
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Columns in X without any ‘1’ are removed for subsequent consistency

without loss of generality, resulting in a matrix X of dimension N · P,

where P < Q. Given the data matrix X as defined above, with general

term xij, let us define the following frequencies:

xnS ¼
X

p

xnp xSp ¼
X

n

xnp xSS ¼
X

n

X
p

xnp

f ns ¼ xns=xss f sp ¼ xsp=xss f np ¼ xnp=xss:

Let Y be the matrix with the general term ynp ¼ fnp/(fSpHfnS). Y is a

transformed data matrix in which considering Euclidean distances between

column vectors will be equivalent to considering x2 distances within the

original data matrix X.

Let Z be the matrix with general term znp ¼ fnp /H(fnS · fSp) and Z0 its

transpose. The space generated by the eigenvectors of ZZ0 provides a proper

decomposition of the sequences-residues association between its sources of

variation (Peña, 2002).

The next step is to project the columns of matrix Y into the space generated

by the eigenvectors of matrix ZZ0. Let vk be the k-th eigenvector associated

with the k-th non-null eigenvalue lk of matrix ZZ0 (excluding the trivial

solution l ¼ 1). The coordinates of residue ‘p’ in factor ‘k’of the space of

sequences is

cpk ¼
X

n

vkn · f np

f Sp

ffiffiffiffiffiffi
f nS

p
Let F ¼ (f1, f2, . . ..., fN) be a binary column vector N · 1 coding for a

subfunction F in such a way that its general term fn is ‘1’ if sequence ‘n’ has

function F, or ‘0’ otherwise. In MCA, the vector F can be readily projected

as a supplementary column into the space generated before, together with

residues ‘p’, so that it will tend to be projected closer to those residues having

the same presence/absence profile along the whole sequence population. We

will predict those residues to be responsible of conferring that subfunction to

a given sequence.

The coordinates of a supplementary column F in factor ‘k’ of the space

of sequences is

cFk ¼
1P
n F

X
n

ðFn ·
vknffiffiffiffiffiffi
f nS

p Þ:

Therefore, the candidates that are responsible for the function F will be

determined by those ‘p’ that minimize the Euclidean distance to F, i.e.

dðp‚FÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k

cpk · cFk

r
‚

where k is the maximum number of no-null eigenvalues of ZZ0.
When calculating distances d(p,F), we consider in the analysis the whole

set of eigenvectors k which accounts for an explained variance of 100%

(note that for this particular application of MCA we are not interested in

dimensionality reduction).

P-values are associated to these distances in the same way as described

for Xdet.

Examples

We tried these two methods in different sets of aligned proteins for which we

carefully checked that the functional classification is not implicit in the

alignment. These examples illustrate different real scenarios where super-

vised methods should be applied. They cover different degrees of overlap

between the phylogenetic and the functional classification, different defini-

tions of function, and different ways of quantifying functional similarities.

Ras oncogene structural homologs We started from the structural

alignment automatically generated by the Dali program (Holm and

Sander, 1994) from the 3D structure of the Ras oncogene (PDB id: 1ctqA).

This alignment contains proteins binding different ligands, including

nucleotides (GTP, FMN, FAD, etc.), nucleosides, sugars, and so on. The

alignment was filtered leaving only chains with a structural similarity with

the master (1ctqA) higher than 6.0 (ZFSSP score), removing redundancy

above 40% sequence identity, and removing structures without bound ligand.

The final alignment contains 24 proteins binding different ligands. In this

case the disagreement between the classification of the proteins implicit in

this alignment and the functional classification (according to the ligand they

bind) is mainly due to the fact that structural alignment (plus the redundancy

cutoff imposed) is relating remote homologs at very high distances (Fig. 3A).

Fig. 3. Results for the Ras oncogene structural homologs. (A) Phylogenetic

tree derived from the structure-based alignment, drawn with Belvu

(E. Sonnhammer, unpublished data) which implements a neighbour-joining

algorithm to calculate the layout of the tree from the alignment. Additional

trees generated with Bayesian techniques are available for this and the

forthcoming examples in Supplementary Material. Proteins are labelled with

their PDB codes and the bound ligands (PDB nomenclature). The tree is

colored according to the set of bound ligands. Proteins binding the same

ligand could be colored different if the complete set of bound ligands is

not exactly the same. (B) Predictions of the methods mapped on the structure

of the human RhoA (PDB 1ftn), a GTP-binding protein. The bound GDP is

shown in Van der Walls representation and colored by atom identity (CPK).

The residues predicted by the methods are shown in sticks representation and

colored blue for the Xdet method, red for MCdet and purple for the positions

predicted by both methods. The figure was generated with Rasmol (Sayle and

Milner-White, 1995).
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As a measure of ‘functional similarity’ for the Xdet method we used the

chemical similarity between the bound molecules measured as the Tanimoto

coefficient (Holliday et al., 2002). We obtained the Tanimoto coefficients for

all pairs of ligands from the SuperLigands server (http://bioinf.charite.de/

superligands). For pairs where one of the proteins is binding more than one

ligand, we took the pairs of ligands with highest similarity. Solvent and

non-functional small molecules are excluded. All the guanine nucleotides

(GTP, GDP, GNP) are considered as a single class (‘GXP’) since the binding

properties of the proteins they are bound to are identical and the fact that they

are binding a particular guanine nucleotide is due to factors extrinsic to the

protein (crystallization with artificial non-hydrolysable nucleotides, etc). So,

for example, two proteins binding GTP and GNP respectively are considered

here as 100% functionally identical.

MCdet was used to predict the residues responsible for this GXP function

(see Results) since that is the one with enough representatives in the

alignment. Sufficient representatives of the target function is a crucial

requirement for the reliability of the predictions of this method (see

Discussion).

SH3 domains SH3 domains are peptide recognition modules which bind

to some Prolin-rich motifs in proteins. Despite having a common evolution-

ary origin and a similar overall structure, they are very divergent in sequence.

SH3 domains can be grouped in different functional classes depending on

the peptide they bind (Cesareni et al., 2002). These domains are very diver-

gent and a phylogenetic tree based on this alignment does not reflect the

functional classification (Fig. 4A and B).

Fig. 4. Results for the SH3 domains. (A) Hierarchical functional classification of SH3 functional classes adapted from (Cesareni et al., 2002). (B) Tree obtained

with Belvu from the alignment of SH3 domains described in Methods. Proteins are colored according to the functional class they belong to (panel A). (C) Two

orthogonal views of the predictions of both methods mapped on the structure of Fyn Tyrosine Kinase bound to a synthetic peptide (PDB 1fyn). Color codes as

in Figure 3.

F.Pazos et al.
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The functional similarities between the classes for feeding the Xdet
method were obtained from a hierarchical functional classification of

SH3 domains developed by experts (Cesareni et al., 2002) (Fig. 4A). In

the context of the Xdet method, the functional distance between two classes

is just the number of branches between these classes and the first internal

node they converge in the functional tree. The functional similarity (sim)

is obtained from the functional distance (dist) as sim ¼ max_dist � dist,

where max_dist is the maximum distance (4 in this case). For example,

sim(1R,1R) ¼ 4 (highest); sim(1R,2R) ¼ 3, sim (1R,2D) ¼ 0, etc.

The MCdet method was used to predict the residues associated with

the 1R class.

Structural alignment of TIM-barrel hydrolases We started from the

structural alignment automatically generated by the Dali server for the

1qumA structure and filter it leaving only ZFFSP � 7.0 and %seq_id �
30%. This structural alignment contains TIM-barrel structures, most of them

enzymes belonging to different EC classes. We restricted the alignment to

the hydrolases (EC: 3.2.1.�). We ended up with 20 sequences belonging to 10

subclasses of hydrolases (3.2.1.1; 3.2.1.2; 3.2.1.35; . . .). This alignment

contains long, unrealistic distances between proteins owing to remote homo-

logy. In this case we used binary functional similarities for the Xdet method:

sim(A,B) ¼ 1 if A and B belong to the same hydrolase subclass, and 0 oth-

erwise. The MCdet method was used to predict the positions responsible for

the 3.2.1.1 subclass (the one with enough representatives in the alignment).

Lactate/malate dehydrogenases This family of homologous enzymes

encompasses two main functional subfamilies (EC: 1.1.1.27 and 1.1.1.37),

acting on lactate and malate respectively.

We started from the Pfam (Bateman et al., 2004) alignment PF00056

(‘lactate/malate dehydrogenase, NAD binding domain’). This domain covers

residues 1–145 of the Escherichia coli malate dehydrogenase. From this

Pfam alignment we removed redundancy >80% seq. id., ending up with an

alignment of 46 proteins.

The phylogeny-function disagreement in this case arises because there is

a group of malate dehydrogenases which is clearly more similar to the

lactate dehydrogenases than to the rest of malate dehydrogenases (Fig. 6A).

As in the previous example, for the Xdet method we used a binary

functional similarity (1 for pairs of proteins belonging to the same class

and 0 for the rest).

RESULTS

Ras oncogene structural homologs

This example represents a case where a set of proteins is related

by structural alignments. There is a disagreement between the

classification of the proteins implicit in the alignment and the func-

tional classification (Fig. 3A). It also illustrates the cases where the

functional classification is based on the ligand bound to the protein

and where ‘functional similarities’ between proteins can be quan-

tified from the chemical similarities between these ligands.

Even for groups for which there is an overall good agreement

between the functional and the phylogenetic classification (like

GXP: GTP, GDP, GNP, etc) there are prominent exceptions, like

the FtsZ cell division protein (PDB 1fsz), which is a GTPase far

from the GXP group.

The residues responsible for functional specificity predicted by

both methods for the structural neighbours of the Ras oncogene (see

Methods) are shown in Figure 3B, mapped in the structure of a

GTP-binding protein, the human RhoA (PDB 1ftn). The MCdet
method was used in this case to predict the residues responsible

for the ‘guanine nucleotide binding’ function (GXP). Xdet is

designed to predict positions with a ‘global’ importance for

conferring binding specificity, instead of being related with a

particular ligand. The 11 residues closer to the vector representing

the G · P function according to MCdet and the six residues with

highest correlation with the matrix of functional distances according

to the Xdet method are shown. Three residues are common to both

methods. The predictions of both methods clearly cluster around the

bound nucleotide (GDP in this example). MCdet predicted residues

mostly close to the Guanine and the phosphate groups. All the

Xdet predictions close to the ligand point to the phosphate groups,

reflecting that this is the region conferring ‘global’ specificity for

ligand binding in this family of structural neighbours (the region

where the ligands are more different). Interestingly, the predictions

of both methods extend a little bit beyond the last (b) phosphate of

the bound GDP, in the region where the third phosphate (g) should

go in the GTP form of the molecule. There are some predictions far

from the GDP for which we do not have an obvious explanation

(possible false positives), like V9 and D78 for Xdet, or T60 and

G62 for MCdet.

SH3 domains

This second example illustrates a case where relationships between

proteins are based on remote homology. The functional classifica-

tion is based on expert knowledge (G. Cesareni et al., 2002 and

personal communication). We try to illustrate how such a complex

‘ontology-based’ classification can be used to quantify functional

similarities. The intrinsic complexity of this functional classifica-

tion (and its eventual drawbacks) maybe is leading to some

disagreement between the functional and the phylogenetic classi-

fication, although it is clear that the remote homology is mainly

responsible for it. SH3 domains are the prototypical case of remote

homology were classical sequence-based methods are difficult to

apply.

Figure 4B shows the phylogenetic tree generated with the

neighbour-joining method implemented in Belvu (E. Sonnhammer,

unpublished data) from the alignment of SH3 domains described

in Methods. It can be seen that the phylogeny do not account for

the different functional subtypes. This function/phylogeny dis-

agreement is also present in more sophisticated Bayesian trees

(Supplementary Material).

Figure 4C shows the predictions of both methods mapped on the

structure of the SH3 domain of the Fyn Tyrosine Kinase bound to a

synthetic peptide (PDB 1fyn). The MCdet method was used to

predict the residues responsible for the ‘1R’ functional specificity.

The sets of residues predicted by the two methods clearly follow the

bound peptide, and they are specially concentrated in its terminal

ends. Binding specificity of SH3 ligands is known to reside mainly

in the variable ends, the central part being more conserved (con-

served Prolins) across all the ligands (Cesareni et al., 2002). The

predictions extend a little far beyond the C-term of the peptide.

Actually, the two residues in common between the predictions of

both methods are there. This could indicate that this region is also

important when binding natural substrates (longer proteins). Some

of the predicted residues, like Y137 (highest score in Xdet) and L90,

have been extensively described in the literature as important for

determining specificity (Cesareni et al., 2002).

TIM-barrel hydrolases

The third example covers the other extreme of the sequence

relations. In this case it cannot be discarded that some of the struc-

tural similarities are the consequence of a process of convergent
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evolution. The disagreement between the alignment-based and the

functional classification comes from these distant relationships. In

this case, the functional classes are enzymatic activities differing in

their substrate specificity (last EC number) that allows a simple

quantification of the distances in a binary form.

The Xdet method was used to predict positions with a global

importance for differentiating the various 3.2.1.� classes. The

MCdet method was used to predict the positions specifically

responsible for the 3.2.1.1 function, in contrast to the rest of 3.2.1.�.
Figure 5 shows the residues predicted by each method mapped

on the structure of a Bacillus subtilis a-amylase (PDB 1bag)

(Fujimoto et al., 1998). There are three residues in common

between the five residues predicted by the MCdet method and

the six predicted by Xdet. Of the 11 residues, 9 predicted by

both methods cluster in the active site of the protein, indicated

in this case by the presence of a bound maltopentaose. The second

highest-scoring residue reported by Xdet (208) is mutated in the

original paper reporting the 1bag 3D structure (E208Q) (Fujimoto

et al., 1998) to demonstrate its involvement in the active site of

this protein. Two residues (D171 and G172), independently pre-

dicted by Xdet and MCdet respectively, are relatively far from the

active site but clustered together. Still, D171 is coordinating a cal-

cium ion indicating a possible functional role in this protein,

although such possibility is not described in the original publication

(Fujimoto et al., 1998).

To illustrate the difference between these supervised methods

and the ones which rely on the phylogeny represented by the align-

ment to detect positions responsible for functional specificity, we

apply the MB-method (del Sol Mesa et al., 2003) to the same

multiple alignment. That approach is methodologically similar to

Xdet (see Discussion) but it uses the functional classification impli-

cit in the alignment instead of an external one. As expected, the

equivalent 6 residues predicted by that method with highest cor-

relation values are not clustering around the active site (Fig. 5).

Only one residue predicted by MB-method (D97) is also predicted

by Xdet and MCdet. This illustrates the importance of using methods

guided with the actual functional information (supervised) for

cases where it is suspected that the alignment is representing

unrealistic phylogenetic distances (alignments based on remote

homology, etc.)

Lactate/malate dehydrogenases

For the last example we present a case where the proteins are closely

related, the sequence relations are very clear and the alignment can

be obtained with any common MSA program. As in the previous

case, the functional classes are enzymatic activities differing in the

substrate specificity (last EC number) and the functional distances

between them are defined in a binary way. This family of proteins

has already been used by Hannenhalli and Russell to test their

method (Hannenhalli and Russell, 2000).

Figure 6A shows the phylogenetic tree obtained from the MSA

of the lactate/malate dehydrogenases (LDH, MDH) described in

Methods. It can be seen that there is a group of MDHs (let’s call

them MDH’) which is closer to the LDHs than to the rest of MDHs.

This function/phylogeny disagreement is also present in a Bayesian

tree generated from the same Pfam alignment (Supplementary

Material). An unsupervised method would be, to some extend, con-

fused by this ‘non-functional’ phylogeny and would try to locate

residues common to LDH + MDH’ and different from MDH, which

would obviously not reflect the malate versus lactate specificity.

Figure 6B shows the predictions of both methods for this align-

ment mapped on the structure of the Aquaspirillium arcticum malate

dehydrogenase (PDB: 1b8u). For the MCdet method we show the

intersection between the positions predicted to be specific for

malate and the ones predicted to be specific for lactate. These should

correspond to positions which tend to be conserved within the

MDHs and within the LDHs but with the amino acid type being

different in these two functional classes. It can be seen that most of

the positions independently predicted by the two methods are relat-

ively close to the active site of the protein marked by the bound

NAD and oxalacetate. These predictions include two of the six

positions detected by Hannenhalli and Russell with their supervised

method (Hannenhalli and Russell, 2000): 95 and 99 in 1b8u (102

and 107 in their article). The other four positions predicted by

Hannenhalli and Russell are outside the Pfam-based alignment

used here, which only covers the N-terminal domain of this family.

Position 95 is detected by both, MCdet and Xdet (2nd highest

Xdet score). This position is R in MDH and Q in LDH (Fig. 6B)

and there is plenty of experimental information demonstrating

its importance on determining the lactate/malate specificity

(Hannenhalli and Russell, 2000). In this example, the relationship

between specificity-determining residues and closeness to the sub-

strate is not very obvious since even the experimentally determined

position 95 is not at contact distance with the substrate (Fig. 6B).

Fig. 5. Results for the TIM-barrel hydrolases. The predictions are mapped on

the structure of the B.subtilis a-Amylase complexed with maltopentaose

(PDB 1bag) (Fujimoto et al., 1998). The bound maltopentaose and the

two calcium ions are colored green. The color code for the predicted positions

is the same as for Figures 3 and 4. The pink arrow marks the E208Q mutant

(Fujimoto et al., 1998). Additionally, the residues predicted by the

MB-method (del Sol Mesa et al., 2003) based on the phylogeny implicit

in the alignment are shown in sticks and colored yellow (except D97 which

is also predicted by Xdet and MCdet and hence colored purple).
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DISCUSSION

In this work we present two new supervised methods for the detec-

tion of positions responsible for functional specificity from protein

alignments. Since they are informed with an external functional

classification, they are intended to be applied when this functional

classification is not the one implicit in the alignment. We show

four examples that cover the full range of sequence relations,

from proximal to purely based on structural alignments. For each

one of them we carefully checked that the functional classification

is in disagreement with the phylogeny-based classification. These

examples cover different degrees of overlap between the phylo-

genetic and the functional classification, different definitions of

function, and different ways of quantifying functional similarities.

These two methods are complementary, between them and with

existing approaches, since they have their own advantages and

limitations. The advantage of Xdet with respect to MCdet and

other existing supervised methods is that it is the first method

that can naturally incorporate quantitative information on functional

hierarchies and/or functional similarities, compared with the other

methods which can only work with ‘disjoin’ functional classes not

related by distances or hierarchies. This is important due to the

complexity of the ‘protein function’ phenomenon which require

complex hierarchical functional classifications and ontologies to

be represented (Harris et al., 2004). Another advantage is that it

does not require many examples of the different functional classes

to work. Its main disadvantages are that it predicts residues with a

‘global’ importance for defining the classes (it is not designed to

locate residues responsible for one of the classes), and that it is

expected to work better when a rich functional classification (many

classes related by a rich functional hierarchy) is available. The Xdet
approach is methodologically similar to our previously described

MB-method (del Sol Mesa et al., 2003) in which the matrix with

the functional similarities was substituted by a matrix containing

the percentages of sequence identity between the proteins. So, the

assumption of the MB-method is that the functional classification is

the one implicit in the alignment (reflected in the sequence

similarities between the proteins). Hence, the Xdet method uses a

similar technology with a different biological goal: to account for

cases like the ones discussed in this paper, for which the functional

classification is not implicit in the phylogeny.

The advantage of the MCdet method is that it can detect positions

conserved within one subfamily but not within others (responsible

for the specificity of that subfamily only), while other methods

require the positions to be conserved within all subfamilies. On

the other hand, Hannehalli and Russell’s method has a better estim-

ator for small samples (few sequences) based on Dirichlet mixtures

(Hannenhalli and Russell, 2000), while MCdet is expected to work

optimally in cases with enough sequences for the target function.

The advantage of Mirny and Gelfand’s method with respect to

MCdet is its possibility to incorporate information on similarity

between amino acids (Mirny and Gelfand, 2002).

These two supervised methods are complementary to the existing

unsupervised ones in the range of applicability. For cases where a

function/phylogeny disagreement is suspected for the function we

are interested in, it does not make sense to apply unsupervised

methods, as illustrated with the Xdet versus MB comparison for

the hydrolase example (Results).

We will see an increasing number of cases for which certain

functional features will not be reflected in the phylogeny as we

know more sequences and structures. Nevertheless, it is still difficult

to automatically find large sets of these examples, and their

associated functional classes and annotated functional sites. This

makes it difficult to test the methods presented here in datasets large

enough to extract statistically meaningful cutoffs or confidence

values, and to tune the parameters. We plan to work in that direction

Fig. 6. Results for the Lactate/malate dehydrogenases. (A) Phylogenetic tree

generated with Belvu from the MSA of the lactate/malate dehydrogenases

described in Methods. MDHs are colored blue while LDHs are colored red.

The green protein is a MDH which uses NADPH instead of NADH as

cofactor. (B) Positions predicted by both methods mapped on the structure

of the Aquaspirillum Arcticum malate dehydrogenase (PDB 1b8u). Color

code as in Figures 3–5. The bound NAD is colored green. Position 95

(R in MDH; Q in LDH) is marked with a pink arrow.
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in the future. We also plan to explore in the future the possibility of

using the sets of predicted residues to assign protein to functional

classes, as done in other works (Hannenhalli and Russell, 2000). For

these cases where function and phylogeny do not correlate, the

functional assignment cannot be done by the standard methods

based on sequence similarity.

In most of the examples presented in this work, the disagreement

between the sequence-based and the functional classification comes

mostlyfromthefact that theyarebasedonstructuralalignmentswhich

relateverydistantproteins.Wethink thatsuchcaseswillbecomequite

frequent in the future as structural genomics projects continue to

produce 3D structures which will allow establishing links between

proteins which can not be related at the sequence level.

The two methods presented here complement the still limited

andscape of approaches for the phylogeny-independent (supervised)

detection of functional sites. Together with the existing unsupervised

and supervised approaches, they can help in the interpretation of the

incoming stream of sequences and structures in functional terms.

A careful inspection of the ‘‘TIM-barrel hydrolases’’ example

shows that, spite there is an overall agreement between the

functional and the phylogenetic groups, the specific distances

between proteins are long and unrealistic (due to remote homology).

This makes methods based on phylogenetic distances to fail, as

shown when comparing the results of Xdet and MB-method

(Results). This example illustrates the importance of using super-

vised methods not only when there is an overall function-phylogeny

disagreement, but also when the details of the phylogeny (specific

distances) are suspected to be wrong.
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