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REVIEW

Getting connected: analysis and
principles of biological networks
Xiaowei Zhu,1,2 Mark Gerstein,3 and Michael Snyder1,2,4

1Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA;
2Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA;
3Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA

The execution of complex biological processes requires
the precise interaction and regulation of thousands of
molecules. Systematic approaches to study large num-
bers of proteins, metabolites, and their modification
have revealed complex molecular networks. These bio-
logical networks are significantly different from random
networks and often exhibit ubiquitous properties in
terms of their structure and organization. Analyzing
these networks provides novel insights in understanding
basic mechanisms controlling normal cellular processes
and disease pathologies.

Proper execution of complex biological systems occurs
through the intricate coordination of a large number of
events and their participating components. Cellular pro-
liferation, differentiation, and environmental interac-
tions each requires the production, assembly, operation,
and regulation of many thousands of components, and
they do so with remarkable fidelity in the face of many
environmental cues and challenges. Understanding how
cellular and developmental events occur at a molecular
level with such precision has become a major focus for
modern molecular biology, and considerable effort has
been devoted to determining the regulatory networks
that control and mediate complex biological processes.

Until recently dissection of biological networks has
occurred through the efforts of individual laboratories
working on one or a few components, limiting a thor-
ough understanding of individual biological processes in
the context of the entire cellular network. Detailed
analysis of specific components and their interacting
partners or substrates can be used to assemble high-con-
fidence pathways. For example, analysis of the NF-�B
and TGF-� signaling pathways has revealed many com-
ponents whose functions are reasonably well known for
each of these pathways (Mishra et al. 2005; Karin 2006).
Nonetheless, in spite of the intensive study of such path-
ways, new components of these pathways continue to be

discovered (Covert et al. 2005; Ma et al. 2006), indicating
that our analysis of even the most well-studied pathways
is likely to be incomplete.

The advent of high-throughput techniques has allowed
the large-scale identification of components (genes,
RNAs, and proteins), their expression patterns, and their
biochemical and genetic interactions. Although useful
for generating large amounts of biological information,
the data from such studies are often incomplete and con-
tain errors. Nonetheless, they can provide valuable in-
formation about the functions of individual components
and unexpected relationships between components and
cellular processes. For example, Arg5,6, a well-character-
ized metabolic enzyme, was identified to have a DNA-
binding activity through a proteome microarray screen
and was later confirmed to regulate gene expression in
vivo (Hall et al. 2004). Thus far a variety of large-scale
data sets have been identified and used to assemble dif-
ferent networks. Below we briefly describe the different
types of biological networks and general features and
principles that result from the analysis of such networks.

Types of biological networks

Interaction data gathered through both individual stud-
ies and large-scale screens can be assembled into a net-
work format whose topological structure contains sig-
nificant biological properties. To date, at least five types
of biological networks have been characterized in detail:
transcription factor binding, protein–protein interac-
tions, protein phosphorylation, metabolic interactions,
and genetic interaction networks (examples of each of
these networks and their sizes are presented in Fig. 1 and
Table 1). Each of these networks is discussed briefly be-
low.

Transcription factor-binding networks

Transcription factor-binding networks have been as-
sembled in two ways: (1) The analysis of individual com-
ponents has been used to develop intricate maps in sea
urchins and other model organisms (Davidson et al.
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Figure 1. Examples of the five major biological networks. (A) A yeast transcription factor-binding network, composed of known transcription factor-binding data collected with
large-scale ChIP–chip and small-scale experiments. This figure was generated with the program Pajek (de Nooy et al. 2005). (B) A yeast protein–protein interaction network,
containing protein–protein interactions identified by yeast two-hybrid and protein complexes identified by affinity purification and mass spectrometry (Barabasi and Bonabeau
2003). (Reprinted by permission from Macmillan Publishers Ltd: Nature [Jeong et al. 2001], © 2001.) Nodes are colored according to the mutant phenotype. (C) A yeast
phosphorylation network comprised primarily of in vitro phosphorylation events identified using protein microarrays (Ptacek et al. 2005). The figure was generated with Osprey
1.2.0. (Breitkreutz et al. 2003). (D) An E. coli metabolic network with 574 reactions and 473 metabolites colored according to their modules (Reprinted by permission from
Macmillan Publications Ltd: Nature [Guimera and Nunes Amaral 2005], © 2005). (E) A yeast genetic network constructed with synthetic lethal interactions using SGA analysis
on eight yeast genes (From Tong et al. 2001; reprinted with permission from AAAS). Nodes are colored according to their YPD cellular roles.
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2002); and (2) the large-scale identification of transcrip-
tion factor-binding sites using chromatin immunopre-
cipitation followed by probing of genomic microarrays
(ChIP–chip) or DNA sequencing (ChIP–PET or STAGE)
has been used to assemble networks in yeast and other
organisms (Horak and Snyder 2002; Kim et al. 2005; Wei
et al. 2006).

Thus far a large number of ChIP mapping experiments
have been performed in yeast and mammalian cells. The
data from ChIP experiments are often of variable quality,
particularly in mammalian cells. Most of the initial
ChIP–chip experiments used genomic arrays comprised
of PCR products that allowed crude mapping of binding
sites and often lower-quality results. More recent experi-
ments use oligonucleotide arrays that allow higher-reso-
lution mapping of the binding regions (Cawley et al.
2004; Borneman et al. 2006). The calling of targets is not
trivial as there is a considerable range of signals and
probability values associated with each target, often
leading to arbitrary assignment of thresholds to the data.
Nonetheless, interesting networks have been assembled
using these data sets.

For yeast, >250 ChIP–chip experiments have been per-
formed using cells incubated in a variety of experimental
conditions or treated with different stimuli, and >10,000
interactions have been reported (Horak et al. 2002; Lee et
al. 2002; Harbison et al. 2004; Borneman et al. 2006).
These have been assembled into a variety of global net-
works and subnetworks. For mammalian cells, a large
number of experiments have also been performed, often
by analyzing selected regions of the genome (Martone et
al. 2003; Cawley et al. 2004) or promoter regions (Li et al.
2003). For example, the global identification of targets of
three factors involved in embryonic stem cell mainte-
nance has suggested pathways important for stem cell
self-renewal (Boyer et al. 2005). Similarly, the analysis of
targets of three major transcription factors has revealed a
transcriptional map of skeletal myogenesis (Blais et al.
2005).

By combining binding data with expression data, the
putative effect of binding on transcriptional output (i.e.,

activation or repression) can often be obtained. For in-
ducible factors, studies with human NF-�B and STAT1
indicate that only a subset (30%–40%) of differentially
expressed genes appear to be direct targets of the factor of
interest; presumably many differentially expressed genes
are regulated by factors other than the one of interest.
Likewise, only a small fraction of binding sites appear to
be directly modulating nearby gene expression, as many
binding sites do not reside near genes whose expression
is altered. For example, the majority of NF-�B- and
STAT1-binding sites reside near genes whose expression
is not altered by the conditions that activate the factor
(Martone et al. 2003; Cawley et al. 2004; Hartman et al.
2005). In addition, experiments with yeast have shown
that deletion of a transcription factor typically affects
only a subset of targets (Gasch et al. 2000). These obser-
vations indicate that many binding sites lack biological
function, or more likely, are functionally redundant with
other regulatory sites or affect gene expression under
other conditions. For the case of mammalian systems,
they might also operate on genes that reside at distant
locations (Carroll et al. 2005).

Protein–protein interaction networks

Protein–protein interaction maps represent the largest
and most diverse data sets available to date. The first
maps were generated using two-hybrid studies in which
interactions of protein partners are accessed in yeast us-
ing a transcriptional readout (Uetz et al. 2000; Ito et al.
2001). Large-scale two-hybrid studies have been used to
study interactions in other organisms such as Dro-
sophila, Caenorhabditis elegans, and humans (Giot et al.
2003; Li et al. 2004; Rual et al. 2005). More recently,
high-throughput studies using affinity purification fol-
lowed by identification of associated proteins using mass
spectrometry have resulted in large data sets of protein
interactions. Two recent studies have described the pu-
rification of most proteins present in a eukaryotic cell,
and both identified ∼500 protein complexes in yeast
(Gavin et al. 2006; Krogan et al. 2006). Considering the
coverage of the experiments, these studies suggest there

Table 1. Current status of biological networks

Type
of network Species

Number
of nodes

Number of
interactions Reference

Transcription factor-binding network S. cerevisiae 3528 7419 Yu et al. 2003a

3207 11231 Harbison et al. 2004b

Protein–protein interaction C. elegans 2788 4441 Stark et al. 2006
D. melanogaster 7546 25403
Homo sapiens 7509 20979
Mus musculus 209 393
S. cerevisiae 5325 51773

Phosphorylation network S. cerevisiae 1325 4200 Ptacek et al. 2005
Metabolic network E. coli 473 574 Guimera and Nunes Amaral 2005

S. cerevisiae 646 1149 Tong et al. 2004
Genetic network S. cerevisiae 3258 13963 Reguly et al. 2006c

aTranscriptional factor-binding data collected at rich-media condition.
bTranscriptional factor-binding data collected at a variety of growth conditions.
cSynthetic lethal interactions among nonessential genes.
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are ∼800 protein complexes in yeast. Extrapolation to the
human proteome based on gene number predicts an es-
timate of 3000 human protein complexes.

Interactions studies each have technical concerns as-
sociated with them (Goll and Uetz 2006). Two-hybrid
studies may reveal interactions that do not normally oc-
cur in vivo. Affinity purification, on the other hand, may
yield protein contaminants and may not detect interac-
tions in which binding partners are present substoichio-
metrically in a complex. Comparison between these data
sets reveals only partial overlap even for the most com-
prehensive studies. This is likely due to the incomplete
coverage of each study and diverse computational meth-
ods or stringencies applied to interpret the raw data sets.
Nonetheless, these interaction maps, when integrated
together, have revealed global topological and dynamic
features of interactome networks that relate to known
biological properties (see below).

Protein phosphorylation networks

Studies of yeast and humans have suggested that 30% of
cellular proteins are phosphorylated in vivo (Cohen
2000; Ficarro et al. 2002; Manning et al. 2002a); this fig-
ure is most likely a large underestimate of the number of
phosphorylated residues since comprehensive mapping
studies have not been performed. Consistent with the
importance of phosphorylation as a regulatory mecha-
nism, eukaryotes devote ∼2% of their protein-coding
genes to protein kinases, ranging from 122 for yeast to
518 for humans (Zhu et al. 2000; Manning et al. 2002b).

Until recently, protein phosphorylation has generally
been mapped on a limited scale. However, newly devel-
oped approaches in mass spectrometry have allowed the
identification of a large number of phosphorylated resi-
dues including those regulated during cell stimuli and
developmental responses (Ficarro et al. 2002; Gruhler et
al. 2005; Ptacek and Snyder 2006). These approaches usu-
ally involve enrichment of phospho-proteins using ma-
trices that bind phospho-modified proteins. For example,
one study of the developing forebrain and midbrain tis-
sues of embryonic mice used strong cation exchange col-
umns followed by tandem mass spectrometry to identify
>500 serine, threonine, or tyrosine phospho-sites (Ballif
et al. 2004). Other studies have used immunoprecipita-
tion to enrich for tyrosine phospho-proteins followed by
mass spectrometry; these have led to discovery of novel
phospho-tyrosine protein modifications in human T
cells (Brill et al. 2004; Tao et al. 2005).

In addition to the identification of phosphorylated
residues, two new approaches have shed light on discov-
ering substrates of protein kinases. The use of modified
kinases that accept only radiolabeled ATP analogs has
revealed many substrates for several yeast kinases in-
cluding the cyclin-dependent kinases Pho85 and Cdc28
(Dephoure et al. 2005; Loog and Morgan 2005). A second
approach used a proteome microarray containing 4400
yeast proteins to detect in vitro substrates for the major-
ity of yeast protein kinases. This study identified ∼4200
phosphorylations affecting >1300 substrates (Ptacek et

al. 2005). These different studies have identified a large
number of phosphorylation events, many of which were
validated in vivo. Many of the phosphorylations in-
volved substrates that operate in a known pathway of the
kinase; however, several validated substrates function in
different cellular processes from those known for the ki-
nase, thereby revealing new functions for the protein ki-
nases.

Metabolic interaction networks

The wealth of biochemical data generated in the past
century when combined with genome sequences allows
the construction of metabolic networks. The metabolic
network usually focuses on the mass flow in basic
chemical pathways that generate essential components
such as amino acids, sugars, and lipids, and the energy
required by the biochemical reactions. As such, these
networks typically present both protein and metabolite
information. Literature curation and genome annotation
have elucidated many complex biochemical pathways
(Kanehisa and Goto 2000; Overbeek et al. 2000) from
which various metabolic networks have been recon-
structed in a wide variety of organisms such as Esche-
richia coli (Reed et al. 2003), Saccharomyces cerevisiae
(Duarte et al. 2004), and human mitochondria (Vo et al.
2004).

Interactions in metabolic networks are closely related
to the gene functions, and therefore have great potential
for immediate applications in the interpretation of gene
roles. Considerable attention has been focused on the
network dynamics using constraint-based analyses such
as flux balance analysis (FBA), which assumes the steady
state of all metabolites and that the organisms will op-
timize the metabolite fluxes to maximize biomass pro-
duction (Segre et al. 2002; Famili et al. 2003; Forster et al.
2003). This approach has led to many successful predic-
tions. For example, an in silico flux model was used to
predict the phenotypes of yeast strains containing gene
deletion mutations grown under various media condi-
tions and achieved a remarkable 83% accuracy (Duarte
et al. 2004). In addition, a flux model on a yeast meta-
bolic network was able to explain enzyme dispensabil-
ity; that is, how loss-of-function mutations of many
yeast enzymes result in viable strains (Papp et al. 2004).
This model suggested that the majority of nonessential
enzymes are vital for cell growth under certain previ-
ously untested conditions, whereas only a small subset
are compensated by isoenzymes or parallel pathways.
Other successful constraint-based analyses in metabolic
networks have also been performed. These include (1)
re-engineering micro-organisms with gene deletions for
the purpose of manipulating their chemical products
(Burgard et al. 2003) and (2) evaluating steady-flux distri-
butions in human mitochondria using constraints re-
lated to normal, disease, and dietetic treatment condi-
tions (Thiele et al. 2005). Additional examples of con-
straint-based analysis can be found in a detailed review
(Price et al. 2004). Although many metabolic network
studies were developed in micro-organisms and S. ce-

Topology studies in biological networks
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revisiae. These studies may also shed light in other or-
ganisms since the fundamental network structures may
be conserved in evolution. Topological analysis of meta-
bolic networks in 43 organisms covering all three life
domains revealed highly similar topological properties,
although great diversity exists among individual path-
ways and components (Jeong et al. 2000).

Genetic and small molecule interaction networks

Combining mutations in two different genes can either
synergistically reduce or enhance the growth or fitness of
an organism, relative to organisms containing individual
mutations. One of the most common interactions ana-
lyzed is “synthetic lethality” in which mutations that do
not individually cause loss of viability are lethal when
combined (Bender and Pringle 1991; Costigan et al.
1992). For many—if not most—species, the majority of
genes are not lethal when mutated individually; this is
likely because of either genetic redundancy or because
the affected genes normally enhance the fitness of the
organism rather than are essential for its viability. When
mutations are combined in the same strain to produce a
phenotype stronger than that caused by an individual
mutation, the mutated genes are often thought to reside
in parallel redundant pathways, although other interpre-
tations are possible. Regardless of the reason, the ability
to combine mutations to produce strong phenotypes pro-
vides the opportunity to carry out synthetic lethal analy-
sis on a large scale that provides a wealth of useful in-
formation.

Large-scale synthetic lethal screens have been per-
formed in S. cerevisiae in which deletion mutations in
only 1100 protein-coding genes (of ∼6000 total) prevent
growth in standard rich medium (Winzeler et al. 1999;
Giaever et al. 2002). Genetic interaction screens using
either plate (SGA) or microarray readouts (dSLAM) with
yeast strains containing mutations in nonessential genes
have been used to systematically uncover synthetic le-
thal interactions (Tong et al. 2001, 2004; Pan et al. 2004).
One recent study that combined genetic interactions
from high-throughput methods and a literature curation
of 53,117 publications in PubMed produced an S. cerevi-
siae genetic network containing 3258 genes and 13,963
interactions; this network revealed a significant overlap
with protein–protein interactions (Reguly et al. 2006).
For essential genes, strains containing conditional mu-
tations such as those that confer a temperature-sensitive
growth defect or with the gene under the control of a
tetracycline titratable promoter can be analyzed under
conditions that reduce, but do not eliminate, the activity
of the gene product (Davierwala et al. 2005). Analysis of
these interactions has also revealed functional relation-
ships between genes and a high correlation with other
properties, such as mutant phenotypes and cellular lo-
calization, thus helping to assign biological roles for un-
known genes and infer novel functions to annotated
genes.

In addition to synthetic lethal screens, other types of
genetic interactions can be measured. These include

combining mutations that disrupt inhibitory interac-
tions and thus enhance growth. In fact, interactions that
when combined either enhance or reduce growth have
been investigated to generate a detailed genetic interac-
tion map, E-MAPs (for epistatic miniarray profiles),
for genes involved in the yeast early secretory pathway
(Schuldiner et al. 2005). Another type of genetic interac-
tion is a synthetic dosage lethal screen in which overex-
pressed genes are introduced into a mutant strain back-
ground; synthetic dosage lethality can provide addi-
tional, and often nonoverlapping interaction data to
those found by combining inactivating mutations (Meas-
day et al. 2005). For example, overexpression of genes
that inhibit growth in a mutant strain background has
been used to screen for genes that would negatively regu-
late protein kinase substrates (Sopko et al. 2006). Finally,
a conceptually similar approach to synthetic lethality is
to screen for mutant strains that are hypersensitive to
inhibitory small molecules. Thus far, screens have been
performed between inhibitory chemical compounds and
deletion mutants of all yeast nonessential genes or
strains heterozygous for mutations in essential genes
(Giaever et al. 2004; Parsons et al. 2004). Such chemical
genetic interactions, when integrated with genetic inter-
actions, often suggest pathways targeted by the drugs as
well as potential direct drug targets. Thus, this approach
offers a powerful tool in deciphering the mechanisms of
action of drugs as well defining suitable biological path-
ways that can be targeted for inhibition.

Other biological networks

The global behavior of gene interactions can also be in-
vestigated by networks connecting genes and/or proteins
sharing certain properties. A coexpression network, in
which genes are connected if their transcripts are coregu-
lated, was assembled in S. cerevisiae and contains 4077
genes connected by 65,430 interactions (Stuart et al.
2003; van Noort et al. 2004). Proteins that share other
properties, such as biological processes (Tari et al. 2005)
and mutant phenotypes (Gunsalus et al. 2005; Ohya et
al. 2005), can also be linked with each other and as-
sembled into networks. The coexpression and homolog
networks differ from the other networks described above
in that the interactions are based on similarities not re-
lated to gene function. Nonetheless, they can still be
investigated with similar approaches and often exhibit
comparable network topology. Moreover, these net-
works also share the “guilt by association” property with
the five biological networks: Highly connected proteins
are likely to be functionally related. Therefore studies on
these networks may also discover novel protein roles and
help to decipher the complex cellular networks, espe-
cially when integrated with other biological networks.

Global topology

Interactions are often assembled into network maps
comprised of proteins (or genes) termed vertices or nodes

Zhu et al.
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and connections between them defined as edges (in un-
directed networks) or arcs (in directed networks). The
directionality of a network is dependent on the charac-
teristics of the biological data. Protein–protein and ge-
netic interactions are usually represented with an undi-
rected network, whereas transcription factor binding,
phosphorylation, and metabolic networks have direc-
tionality built into their interactions. One feature of
nearly all of the interaction studies is that the strength of
interactions can vary considerably. For example, the dis-
sociation constant values observed in a biological system
can vary by >10 orders of magnitude (Wallis et al. 1995).
Such quantitative information, however, is rarely used
in most network analyses, and interactions are usually
reported as binary measurements. Future studies are
likely to overcome these limitations as more accurate
measurements are obtained, and weighted values can be
assigned to network connections as indicators of the in-
teraction strength.

Network topology plays a vital role in understanding
network architecture and performance. Several of the
most important and commonly used topological features
include degree, clustering coefficient, shortest path
length, and betweenness (Fig. 2). Detailed descriptions of
each these statistics are listed as follows: (1) Degree: The
number of links connected to one vertex is defined as its
degree. In directed networks, the number of arcs that end
at the node is termed as “in-degree,” and the number of
arcs that start from the node is termed as “out-degree.” A
node with high degree is better connected in the network
and therefore may play a more important role in main-
taining the network structure. (2) Distance: The shortest
path length between two vertices is defined as their dis-
tance. In an interaction network, the maximum distance
between any two nodes is termed as the graph diameter.
The average distance and diameter of a network measure
the approximate distance between vertices in a network.

A network with a small diameter is often termed as a
“small world” network (Milgram 1967), in which any
two nodes can be connected with relatively short paths.
Many real world networks such as metabolic networks
have a small world architecture (Watts and Strogatz
1998), which may serve to minimize transition times
between metabolic states (Wagner and Fell 2001). (3)
Clustering coefficient: The clustering coefficient of one
vertex can be calculated as the number of links between
the vertices within its neighborhood divided by the num-
ber of links that are possible between them. A high clus-
tering coefficient for a network is another indicator of a
small world. (4) Betweenness: Betweenness is the frac-
tion of the shortest paths between all pairs of vertices
that pass through one vertex or link. Betweenness esti-
mates the traffic load through one node or link assuming
that the information flows over a network primarily fol-
lowing the shortest available paths.

Assembly of interactions into networks reveals that
current versions of biological networks are not randomly
organized but rather have a “scale-free” format contain-
ing hubs with many connections and a large number of
nodes that have one or a small number of connections
(Fig. 3; Barabasi and Oltvai 2004). This organization was
originally discovered in World Wide Web interactions
and later found to exist in four of the types of networks
described above: protein–protein interactions, transcrip-
tion factor binding, metabolic, and genetic data sets
(Barabasi and Albert 1999; Jeong et al. 2000, 2001;
Guelzim et al. 2002; Tong et al. 2004). Below we dem-
onstrate that this is also the case for the phosphorylation
network as well. Compared with a bell-shaped degree
distribution in random networks, scale-free networks
have a typical “power law” distribution, P(k) � k−�, in
which k is the degree and P(k) is the probability that a
randomly selected node has a degree k. This results in a
“fat-tailed” distribution in which there are vertices with

Figure 2. Topological parameters. Five commonly
used topological parameters are illustrated in both
graphs and formulae. (A) Degree measures the num-
ber of connections one node has. (B) Distance is the
length of the shortest path between two nodes. (C)
Diameter is the maximum distance between any
two nodes in a network. (D) Clustering coefficient
measures the percentage of existing links among the
neighborhood of one node. (E) Betweenness is the
fraction of those shortest paths between all pairs of
vertices that pass through one vertex or link. All
graphs and formulae are based on an undirected net-
work.

Topology studies in biological networks
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high degrees termed “hubs.” The advantage of this type
of organization is that the system is more robust; ran-
dom loss of individual nonhub vertices is less disruptive
in a scale-free network than a random network.

Hub components in a scale-free network are extremely
important and therefore usually play essential roles in
biological systems. In the yeast protein–protein interac-
tion networks, hubs are more likely to be essential and
conserved relative to nonhub proteins (Jeong et al. 2001;
Barabasi and Oltvai 2004). Presumably much of the regu-
lation in a network occurs and is mediated through such
proteins. Likewise, key components whose activation is
sufficient to induce a cellular process (master regulator
genes) have been shown to be regulated by many other
components and are thus target hubs; these often lie
downstream in the process (Weintraub et al. 1989; Borne-
man et al. 2006). Not all components within a regulatory
pathway serve as master regulators, probably because
noise introduced into the system may inappropriately
activate the process at undesired times. Presumably,
components that lie within a network are buffered
through both positive and negative regulatory contacts
that prevent them from directly activating a biological
process. The location of master regulators at the bottom
of a highly connected network would allow maximum
information input to be interpreted through upstream
components and relayed into a final decision output;
thus master regulators often represent important regula-
tory nodes in biological networks. For example, Twist, a
master regulator controlling gene expression in embry-
onic morphogenesis, is responsible for tumor invasion
and metastasis (Yang et al. 2004).

Further analysis of the transcription factor network

has also revealed an additional novel aspect of regulatory
network hierarchy. When the binding targets of E. coli
and S. cerevisiae transcription factors are analyzed with
respect to binding to other transcription factors, a pyra-
mid-shaped hierarchical organization can be assembled
with a few key regulators at the top to which few other
factors bind and most transcription factors on the bot-
tom as the functional units for specific pathways (Yu and
Gerstein 2006). Similar to the middle managers in social
networks such as governmental hierarchies, transcrip-
tion factors in the middle layers often regulate more tar-
gets and have higher betweenness, indicating that they
may function as bottlenecks in the hierarchy. With more
interaction data gathered in the future, such hierarchical
structures can also be investigated in other directed net-
works such as metabolic networks and phosphorylation
networks.

Similarities between the transcription and
phosphorylation networks

Transcriptional control and post-translational regulation
with kinase phosphorylation are two major methods eu-
karyotes use for gene regulation; each controls a large
number of targets. In yeast, humans, and many other
organisms, the number of these two types of regulators is
within twofold; there are ∼250 transcription factors and
122 protein kinases in yeast (Zhu et al. 2000; Harbison et
al. 2004) and ∼1300 transcription factors and 518 protein
kinases in humans. As shown in Figure 4, we have per-
formed a detailed comparison of the network topologies
of the yeast transcription factor-binding network and
phosphorylation network under rich-nutrient condi-
tions. These networks contain a remarkable number of
similarities. First, the two networks share similar degree
distributions: exponential in-degree distributions (Fig.
4A) and power law out-degree distributions (Fig. 4B). Sec-
ond, many topological parameters are comparable be-
tween the two networks; however, the phosphorylation
network is denser than the transcription factor-binding
network and contains more nodes with large in- and out-
degrees. Finally, the current phosphorylation network is
smaller than the transcription factor-binding network.
Both networks are built on incomplete data sets and may
contain errors. The yeast phosphorylation data, in par-
ticular, are primarily collected from one large-scale
study covering only two-thirds of all the yeast kinases.
The transcription factor-binding network has more ex-
perimental sources and therefore a larger coverage. Since
diameter is positively correlated with the network size,
and limited sampling of a network often lowers the av-
erage clustering coefficient (Friedel and Zimmer 2006),
the difference in the network size may explain why the
transcription factor-binding network has a larger diam-
eter and a higher clustering coefficient.

Network modules

Although initial studies have characterized the global
topological structure of biological networks, recently

Figure 3. Topological comparison between a random network
and a scale-free network. Degree distribution in random net-
works is bell-shaped. The scale-free network has more high-
degree nodes and a power-law degree distribution, which leads
to a straight line when plotting the total number of nodes with
a particular degree versus that degree in log-log scales.
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much attention has been paid to the local units of the
networks. Large subgraph units, assembled by groups of
densely associated proteins and connected to each other
with loose links, are defined as network modules (Girvan
and Newman 2002; Rives and Galitski 2003; Newman
2006). Such community-like network modules have
been uncovered in many types of social networks as well
as biological networks, in which they often function as
essential components of the network. For example, one
study of protein interactions in a transcriptional net-
work indicates that different types of transcriptional
regulators such as transcription factors, nuclear trans-
porters, and nucleosome remodeling proteins prefer to
form modules within each class, and the modules are
jointed with sparse connections (Tsankov et al. 2006).
The modules often contain proteins of unknown func-
tion, and therefore may shed light on protein function
predictions. Furthermore, two classes of proteins are re-
vealed by studies of modular structures. “Module orga-
nizer” proteins are highly connected to other proteins
within modules and are essential to the module func-
tions. “Module connector” proteins link different mod-
ules together and are vital for intermodule communica-
tions (Rives and Galitski 2003).

Many methods have been developed to identify pos-
sible network modules. A traditional method, hierarchi-
cal clustering, assigns a weight value to the distance be-
tween any two nodes in a network, and then gathers
nodes with similar weight vectors together into strongly
connected cores (Rives and Galitski 2003). Instead of de-
tecting cores of modules in hierarchical clustering, the
Girvan-Newman algorithm focuses on defining the
boundaries of modules by searching for edges with high
betweenness and therefore those that are more likely to
link different modules (Girvan and Newman 2002).
Other algorithms have been introduced recently and
may demonstrate improvement in module identification
(Guimera and Nunes Amaral 2005; Adamcsek et al.
2006; Newman 2006). One concern, however, is that net-

work modules are often dependent on the methods and
parameters used in the initial data partitioning, and in
general it is difficult to tell which method is better
(Barabasi and Oltvai 2004). Furthermore, inaccurate and
incomplete data of the interaction networks may also
lead to biased module predictions. Nonetheless, net-
works modules are still ubiquitous structures in most
biological networks and may help one to better understand
the interplay between network structure and function.

Network motifs

The availability of large interaction data sets allows the
identification of much smaller common patterns or mo-
tifs within large networks that are used with signifi-
cantly higher frequencies relative to randomized net-
works. Analysis of transcription factor-binding data in E.
coli has revealed three different types of motifs: feed-
forward loops (FFL), single input modules (SIM), and
dense overlapping regulons (DOR) (Shen-Orr et al. 2002).
FFL and DOR are also found to be significantly enriched
in yeast transcriptional networks (Milo et al. 2002). It is
possible that many, and perhaps all, single input motifs
in eukaryotes are the result of incomplete data and that
most genes probably contain multiple inputs.

We applied a tool, mfinder (Milo et al. 2002), to iden-
tify enriched three-element and four-element motifs in
an updated yeast transcription factor-binding network
and the yeast phosphorylation network. Both data sets
were generated in yeast cells grown in rich media con-
ditions. Among all possible three-element motifs, the
FFL was found to be well overrepresented in transcrip-
tional networks (Fig. 5). Coherent FFL, in which both
transcription factors have the same regulation effects (in-
duction or repression) on the target, may suggest a func-
tional design for gene transcription regulation. Studies
have shown that coherent FFLs can control downstream
processes in a fashion that is resistant to transient noise,
since targets in FFL can only be effectively regulated

Figure 4. The yeast phosphorylation network re-
sembles the transcription factor-binding network in
their topological structures. (A) The in-degree and
out-degree distributions were plotted after the nodes
were binned to several degree intervals. Both net-
works have power-law in-degree distributions and
exponential out-degree distributions. (B) Many topo-
logical parameters are comparable between the two
networks, except that the transcriptional network is
larger and the phosphorylation network is denser.
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through persistent signals (Shen-Orr et al. 2002). A FFL
motif can be easily extended to a four-element motif,
“bi-FFL,” in which the two regulators collectively con-
trol two targets. Bi-FFL motifs are also significantly en-
riched in yeast transcription factor-binding networks.

Thus far, FFLs are not enriched in the current yeast
phosphorylation network. This may be due to the ap-
proach used to prepare the network that tends to under-
estimate the phosphorylation events between kinases,
and additional data may be required to properly evaluate
this network. However, it is possible that the lack of FFL
in phosphorylation networks relative to transcriptional
networks also reflects the biology of these networks.
Phosphorylation networks are often activated by tran-
sient signals that lead to extremely rapid responses on
the order of a few minutes. In contrast, transcriptional
networks are slower and take longer to reach steady state.

Two four-element motifs were enriched in both the
yeast transcriptional network and the phosphorylation
network (Fig. 5). A simple version of the DOR motif, the
“bi-fan motif,” in which two regulators bind common
targets, may suggest a way to use a limited number of
regulators to precisely control a large number of targets
under several different conditions. Moreover, the coop-
eration of transcription factors to regulate targets can
also compensate for the degeneracy and low affinity of
single transcription factor-binding sites (Pilpel et al.
2001). The other enriched four-element motif, the “bi-
parallel motif,” comprises a regulator controlling two
other regulators that further regulate one target gene.
Bi-parallel motifs are found in both transcriptional and
phosphorylation networks and indicate redundancy. In
addition to the two four-element motifs shared by both
networks, the single input motif (SIM) was found to be
overrepresented only in the yeast phosphorylation net-
work. This likely reflects the lack of phosphorylation
data currently available.

Network integration

Integration of different experimental resources is used in
several different ways: (1) to improve the accuracy of
interactions, (2) to identify composite motifs, and (3) to
make functional predictions. Integration of similar data
sets generated with different methods provides a crucial
way to improve data quality and recover missing data.
To remove erroneous interactions in the yeast protein–
protein interaction network, a “filtered yeast interac-
tome” (FYI) was constructed with high-confidence inter-
actions observed in at least two experimental sources
(Han et al. 2004). Studies on C. elegans early embryogen-
esis genes led to an integrative network containing three
types of heterogeneous data: protein–protein interaction,
expression profiling similarity, and phenotypic profiling
similarity (Gunsalus et al. 2005). Further functional
analysis demonstrated that gene pairs connected by in-
teractions from multiple sources are more likely from
the same GO functional categories, indicating improved
accuracy through data integration. In the transcriptional
network, integration with the gene expression data set
has also proven to be useful to improve the data quality
and reveal novel cis-regulatory modules (Bar-Joseph et al.
2003).

Recent bioinformatics software platforms enable users
to query and integrate very different types of interaction
data to learn new information (Breitkreutz et al. 2003;
Shannon et al. 2003; Stark et al. 2006). Instead of search-
ing for overlapping interactions, integration of very dif-
ferent types of interaction data can also be performed to
reveal composite motifs that contain multiple types of
interactions and elements as basic units. An integration
of transcription factor binding, protein–protein interac-
tions, and phosphorylation data from yeast has revealed
a mega-network of >60,000 interactions (Fig. 6A). Inves-
tigations in this mega-network revealed seven three-el-
ement kinase-centered composite motifs (Fig. 6B), of
which five (motifs 1–5) were shown to be overrepre-

Figure 5. All three-unit and four-unit motifs enriched in the
yeast transcriptional factor-binding (TF) network and phos-
phorylation (PHO) network. The units are colored red as regu-
lators and green as targets. The significance of enrichment is
calculated by comparing motif numbers in the transcription
factor or phosphorylation networks (solid bars) with the num-
bers from randomized networks (hollow bars) and indicated by
the z-scores. (A) Bi-fan motifs, in which two regulators bind
common targets, are enriched in both the transcription factor
network and phosphorylation network. (B) Bi-parallel motifs, in
which one regulator controls two other regulators that further
regulate one target gene, are enriched in both the transcription
factor network and phosphorylation network. (C) FFLs, in
which one regulator controls another regulator and both of
them bind a common target, are enriched in the transcription
factor network only. (D) Bi-FFL motifs, in which one regulator
controls another regulator and both of them bind two common
targets, are enriched in the transcription factor network only. (E)
Single input motifs, in which one regulator binds to multiple
targets, are enriched in the phosphorylation network only.
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sented (Ptacek et al. 2005). These composite motifs in-
volve at least one kinase–substrate interaction pair (re-
ferred to as “kinates”) and one other type of interaction
(protein–protein interaction or transcription factor bind-
ing). Thus, network integration combines various data
sources together and therefore can assist in uncovering
proteins that are important in multiple types of interac-
tions and provide a more comprehensive view on their
cellular functions. Moreover, this network can be com-
bined with other networks such as biochemical and gene
interaction data to reveal a more comprehensive view of
regulation in yeast.

In addition to mapping gene roles in a multirelation-
ship network, integration of a variety of relevant geno-
mic data can directly help to predict gene functions and
functional relationships such as protein–protein interac-
tions (Jansen et al. 2003; Troyanskaya et al. 2003). Com-
pared with simple combinations of nonweighted inter-
actions, a probabilistic approach integrating confidence-
weighted data sources may be superior in modeling real
biological data, considering its complicated and heterog-
eneous nature. For example, certain interaction data sets
may be less error-prone and more reliable than others,
and moreover, depending on the purposes of the data
integration, certain data sources may be more informa-
tive and/or relevant than others. In order to overcome
the challenge of data source heterogeneity, several early
studies developed Bayesian network approaches to incor-
porate various data sources such as protein–protein in-
teractions, gene expression profiles, and protein localiza-
tion data for the purpose of predicting protein functions

(Troyanskaya et al. 2003) and protein–protein interac-
tions (Jansen et al. 2003). In both studies, the statistical
reliabilities of different related genomic data were calcu-
lated when comparing with “gold-standard” samples
consisting of known positives and negatives, and then
extrapolated proteome-wide for novel predictions. Later
studies also applied probabilistic models for the discov-
ery of unknown components in pathway-specific protein
complexes (Myers et al. 2005). Overall such probabilistic
models have proven to be valuable in integrating heter-
ogeneous genomic data and demonstrated a substantial
improvement in prediction accuracy.

Network dynamics

Biological networks exhibit complex dynamic behavior,
thereby enabling cells to react to various conditions or
cell states such as cell cycle progression. Unfortunately,
most large-scale data sets do not contain this informa-
tion; static interactions are often identified from cells
exposed to a single condition or at a single time point,
often under nonnative conditions (e.g., two-hybrid).
Only recently have approaches emerged that attempt to
analyze the dynamics of complex biological networks.
More interaction data sets have been collected in specific
cellular conditions, and more importantly, integration
with gene expression profile under various conditions has
proven to be very helpful in network dynamics studies.

In protein–protein interaction networks, proteins may
vary their partners according to time and location. By
integrating gene expression data with a high-quality

Figure 6. Network integration: mega-network and
composite motifs. (A) Three types of interactions—
phosphorylation (blue), transcription factor binding
(yellow) and protein-protein (magenta)—are com-
bined into a mega-network. (B) Seven three-element
kinase-centered composite motifs are listed. (1) In-
teracting kinate motif in which one kinase phos-
phorylates two interacting substrates. (2) Scaffold
motif in which one protein interacts with both a
kinase and its substrate. (3) Transcription factor-
regulated kinate motif in which one transcription
factor (TF) regulates the expression of both a kinase
and its substrate. (4) Kinate regulon motif in which
one kinase phosphorylates both a transcription fac-
tor and the target bound by the transcription factor.
(5) Kinate feedback loop I motif in which a kinase
phosphorylates a protein that interacts with a tran-
scription factor that regulates the expression of that
kinase. (6) Kinate feedback loop II in which a kinase
phosphorylates a transcription factor whose target
physically interacts with the kinase. (7) Heterosub-
strate regulation motif with an interacting kinase
and transcription factor regulating one target to-
gether. Motifs (1) to (5) were found to be enriched in
the yeast integrated network.
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yeast protein–protein interaction data set, Han et al.
(2004) studied the network dynamics in protein–protein
interaction networks and revealed two types of hubs:
“party hubs” and “date hubs.” Party hubs interact with
all their partners simultaneously—that is, at the same
time and spatial locations—and are more likely to func-
tion within the same cellular processes. Date hubs, on
the other hand, vary their connections to other proteins
at different times and locations and therefore link vari-
ous biological processes. When considering the modular
designs of networks, in silico deletions of these hubs
implied that party hubs are more likely to be the module
organizers and date hubs to be the module connectors.

The dynamics of the transcriptional network in yeast
has been examined on a genomic scale by integrating
gene expression data for five cellular conditions with
known transcriptional regulatory relationships (Lus-
combe et al. 2004). A trace-back algorithm was applied to
uncover subnetworks that are active under specific con-
ditions. Luscombe et al. (2004) found that these subnet-
works exhibit vastly different topologies on both a local
and a global level and uncovered two separate groups of
cellular states. In so-called exogenous states (e.g., stress
response), the network has a shorter diameter and large
hubs that should allow cells to respond quickly to exter-
nal conditions. In endogenous states (e.g., cell cycle),
loops and highly intricate connections are more preva-
lent, indicating a multistage internal program. Different
sets of transcription factors become key regulatory hubs
at different times, portraying a network that shifts its
weight between different foci to bring about distinct cel-
lular states.

Network evolution

Various models have been proposed to explain the devel-
opment of the scale-free topology of the protein–protein
interaction network during evolution. A “network
growth” model assumes that nodes with fixed degree are
constantly added to the network. The probability that a
newly added node interacts with an existing node is pro-
portional to its degree, which leads to a so-called prefer-
ential attachment model in which rich nodes get richer
during evolution and finally form a scale-free network
(Barabasi and Albert 1999). In biological networks, the
addition of nodes is due to gene duplication. This model
was supported by the fact that older nodes (proteins hav-
ing orthologs in evolutionarily distant organisms) tend
to have higher degrees than newer nodes (proteins having
orthologs in evolutionarily close organisms) (Eisenberg
and Levanon 2003). However, examination of duplicated
genes shows that they will quickly diverge in their con-
nections and thereby rapidly specialize their interacting
partners. Thus, most paralogs do not share the same part-
ners. These contradictions lead to a “link dynamics”
model that explains the network evolution through in-
teraction loss and preferential interaction gain (Wagner
2001, 2003).

In general, core components of a network tend to be
conserved, whereas components at the periphery or false

interactions are not. In transcription factor-binding net-
works, this concept has been applied to identify func-
tional regulatory elements that are conserved in several
yeast species (Cliften et al. 2003; Kellis et al. 2003). Stud-
ies also have shown that interactions in one organism
can be mapped to another organism if both partners are
highly conserved (Yu et al. 2004). Conserved protein–
protein interaction pairs are termed as interologs (Wal-
hout et al. 2000), whereas conserved transcriptional
binding interaction pairs are termed as regulogs (Yu et al.
2004). New interactions in novel organisms can then be
discovered through mapping interologs or regulogs.

Although conservation of network components and
connections is extremely valuable for mapping con-
served interactions and common features among organ-
isms, it is likely that many regulatory interactions are
not conserved. Mapping of Ste12- and Tec1-binding sites
in closely related yeast S. cerevisiae, Saccharomyces mi-
katae, and Saccharomyces bayanus reveals extensive di-
vergence in binding sites in these different yeasts (A.
Borneman and M. Snyder, unpubl.). These changes likely
lead to species diversity and the ability of organisms to
occupy distinct ecological niches.

Networks and human disease

Disruption of network architecture is expected to relate
to human diseases. One advantage of scale-free networks
is robustness—loss of individual components usually
maintains overall network topology. This organization
in general should make a system relatively immune to
defects that target individual components. Loss of mul-
tiple components as occurs in many forms of cancer is
required for network breakdown. This architecture may
explain, in part, the observation that multiple mutations
are often required for the onset of cancer (Knudson 1971).
Nonetheless, some regions of networks should be more
vulnerable to disruptions than others. Loss-of-activity
mutations that affect hubs are more likely to cause a
defect than those that affect the periphery. In addition,
we expect that activating mutations in master regulators
(target hubs) are more likely to cause apparent defects in
cellular and developmental processes than those that oc-
cur elsewhere in the network. Thus, identifying such
hubs may suggest possible drug targets for reconstruct-
ing the network and therefore curing disease.

Identification of functional roles of unknown patho-
genic genes can also shed light on discovering disease
pathogenic mechanisms. Proteins connected tightly in
biological networks often work in similar processes.
Hence, functional annotations of interacting partners
may indicate potential roles of unannotated disease-re-
lated genes and help us to better understand the patho-
logical mechanisms of the disease. Lim et al. (2006) con-
structed an interactome map focusing on proteins re-
sponsive to human inherited ataxias and purkinje cell
degeneration with a yeast two-hybrid screen. The major-
ity of known ataxia-causing proteins were connected
with short paths, suggesting that other components in
the network might contain candidates responsive to
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other related inherited ataxias with unknown causative
genes. Furthermore, the hubs of this network had crucial
roles for disease development in animal models, imply-
ing a relationship between the disease and the biological
processes in which they are involved: RNA binding or
splicing. Such systematic studies can easily be applied to
other diseases and organisms and will help to identify
crucial components for the disease pathology.

Challenges and future directions

Current studies often draw conclusions for complete in-
teraction networks from limited and possibly erroneous
samples of the actual biological networks. The yeast
two-hybrid protein–protein interaction network, for ex-
ample, shows a typical scale-free structure and is often
used to infer that the complete yeast protein–protein in-
teraction network has the same properties. Recent stud-
ies, however, indicate that the scale-free topology might
be generated through the experimental designs, which
resulted in a biased sample of the complete data set (Han
et al. 2005). Further analyses by Friedel and Zimmer
tested the clustering coefficient among several possible
topologies, and suggested that the scale-free topology
was still most likely to be the organization of the com-
plete protein–protein network, although possibilities of
other topologies could still not be completely excluded
(Friedel and Zimmer 2006). Moreover, when investigat-
ing a more complete protein–protein interaction net-
work, Batada et al. claimed that party hubs and date
hubs, which originated from a smaller interaction data
set (Han et al. 2004), could no longer be differentiated
from each other (Batada et al. 2006). Such debates suggest
that our current view of biological networks may still be
biased, and more interaction data are needed to better
represent the real networks.

The ability to collect large data sets has only just be-
gun. In the future, it should be possible to construct
more complete and accurate networks, for example, by
identifying the targets of all relevant transcription fac-
tors and determining the protein–protein interaction
networks of humans and many other organisms. Consid-
erable effort will be required to find the post-transla-
tional modifications and factors that control the activity
and stability of each protein in different cell states. Fi-
nally, large-scale efforts to map post-transcriptional
regulation such as miRNAs need to be initiated. All of
these interactions and modifications must be accom-
plished in the appropriate cell state and the dynamics of
the process followed. The integration of all interactions/
modifications along with their dynamics will reveal the
ultimate description of how complex biological pro-
cesses such as cell proliferation and development occur
and can be controlled.
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